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CHAPTER 1 

INTRODUCTION 

1.1. Overview 

Considerable effort grasping the fundamental concepts of a broad scope of non-

trivial challenges provides momentum to the extensive realm of transition metal 

coordination chemistry. The available amount of knowledge, along with the access that 

inorganic chemists have to a vast toolbox of materials and methods, has facilitated them 

to tackle relevant obstacles on the molecular level by applying conceptual approaches and 

strategies. The spectrum of contributions, for example, can range anywhere from 

biological cancer therapies to energy-related applications. Owing to the versatility of 

synthetic manipulation and controlled chemical design and reactivity, the insight gained 

from the comprehension of molecular interactions, functions, and mechanisms creates 

traction towards developing innovative solutions. As opposed to directly targeting instant 

applications, research in our group has been primarily motivated by probing the 

underlying principles of preserving the rich electrochemical, spectroscopic, and magnetic 

properties of coordination complex systems that demonstrate effective activity in 

solution-based analyses for ordered surface deposition onto solid interfaces.  

Our approach has been dedicated to spearheading the design of coordinating 

ligands with amphiphilic functionalities that upon complexation with various transition 

metal centers may behave as amphiphilic precursors, also referred to as 

metallosurfactants (i.e., surfactants containing metal ions). For the formation of highly 

ordered monolayers by means of Langmuir–Blodgett deposition techniques this 

amphiphilic behavior is the crucial aspect. Consequently, these monolayers may allow for 
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thin film formation in an attempt to guide the path toward device fabrication for future 

applications. Deriving from this idea, our group is concurrently seeking to address the 

challenge posed by the persisting, nearly inescapable energy crisis. The objective is to 

develop unprecedented thin film materials with the capacity to improve the current 

efficiencies of photosensitized water oxidation catalysts to sustain a hydrogen economy 

post fossil-fuel age. Mimicking the natural process of photosynthesis by way of 

artificially developing systems with the capability of photochemically splitting water has 

been extremely desired. Such a feat requires the investigation of multielectron chemical 

reactivity and controlling energy transfer events. The approach being explored focuses on 

the incorporation of light absorbing antennae, charge accumulation sites, and 

heterobimetallic catalytic cores in an organized extended Langmuir–Blodgett precursor 

modular film. In accord with our overall aim, this methodology would enable for the 

surface deposition of a small-footprint responsive film while conserving the properties 

observed in solution. 

The multidisciplinary nature of our research relies on a concerted effort in 

synthetic protocols, electrochemical, spectroscopic, and photophysical characterizations, 

film formation techniques, and predictive or explanatory theoretical and computational 

methods. Largely, the group has focused on:  

(i) The synthesis and characterization of first-row or selected second-row 

redox-active transition metal coordination complexes containing ligands 

with the capability to stabilize organic radicals. 

(ii) Analyzing the mechanisms of metal/radical ground state switching. 

(iii) Tailoring species for surface deposition.  
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Our group has demonstrated different redox and collapse mechanisms in cobalt(II) films, 

incorporated magnetic μ-oxo-Cu4 clusters in Langmuir–Blodgett films, studied the 

thermotropic mesomorphism of copper-containing amphiphiles, and investigated the 

structural and electronic effects on geometry in metallosurfactants containing various 

first-row transition metal ions with asymmetric ligands. The methodology followed in 

these studies focuses on the isolation and characterization of the distinct 

metallosurfactant precursors prior to surface deposition. Previous reports describe direct 

assembly at the air/water interface which leads to restricted reproducibility because of the 

limited control. The rationale behind our design strategy targets chelating phenolate-

based ligands coordinated to selected metal ions due to its synthetic and redox flexibility. 

Stabilization of the oxidized phenolate into a phenoxyl radical requires tert-butyl 

substituents for improved redox behavior. However, we have experienced first-hand that 

enhanced electrochemical properties can negatively affect amphiphilic behavior, or vice 

versa, and we continue to make efforts towards solving this issue. 

1.2. Research Statement 

Contributions on my part towards these abovementioned group objectives are 

defined generally within the synthetic design and characterization of novel redox-active 

species and the evaluation of electronic and electrochemical responses of such systems. 

In particular, these goals entail furthering our main objective of designing candidates for 

the formation of redox-responsive monolayer films by: 

(i) Using an array of different metal ions to understand how coordination 

preference dictates amphiphilicity. 
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(ii) Exploiting a modular, multi-step approach for synthesizing 

supramolecular, multimetallic amphiphiles of new differentiated 

topologies to optimize redox and amphiphilic behaviors.  

The relevant impact made towards our objective of achieving solar photocatalytic water 

oxidation focuses on: 

(i) Addressing the basic principles underlying photosensitivity by integrating 

ruthenium(II) into our existing amphiphilic precursor ligands for the 

formation of prospective photoresponsive modular films. 

(ii) Introducing a more stable organic radical to our current systems to 

examine the appealing nature associated with multielectronic ligand-

centered redox reactivity. 

1.3. Research Goals  

 The strategies executed to address the outlined problems are presented as the 

following Research Goals, which will encompass Chapters 3–7. The basis for the 

sequence that the experimental results are presented coincide with the chronological 

development of the progressing group motivations. 

 

Goal #1: To develop responsive metal-containing surfactants that serve as 

precursors for Langmuir–Blodgett films. Current approaches in the emerging 

field of responsive thin film materials ordinarily involve assembling 

metal/organic scaffolds at the air/water interface without the characterization of 

discrete precursors. The isolation of well defined metallosurfactant precursors 

allows for precise control in the surfactant-to-metal ratio and coordination 
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modes of the final structure of the material. In Chapter 3, my resulting 

contributions toward this goal are discussed in detail by concentrating primarily 

on monometallic complexes of early transition metals (d8-NiII, d9-CuII, and d10-

ZnII) with four-, five-, and six-coordinate geometries. We establish the effect of 

coordination and protonation preferences in these metallosurfactants and further 

the knowledge of how these factors dictate the observed amphiphilic behavior. 

 

Goal #2: To extend efforts toward developing redox-active homotetranuclear 

and heterodinuclear pentacoordinated M(III)M(II) amphiphiles of new 

topologies. The specific objective of this goal is based on our group observation 

that when tert-butyl substituents are incorporated into phenolate-based 

headgroups for enhanced metal/radical stabilization, the effect confers improved 

redox behavior and leads to compromised amphiphilic character. This 

occurrence is addressed in Chapter 4 through the development of multimetallic 

film precursors using a modular synthetic approach. Metal inclusion not only 

assists in accommodating both the redox and amphiphilic properties, but permits 

the design of novel topologies that are not available to traditional organic-

derived surfactants. 

 

Goal #3: To achieve the integration of photo-responsive groups to the 

headgroups of metal-containing surfactants that serve as precursors for 

Langmuir–Blodgett films. A pertinent step towards designing metallosurfactant 

precursors for photo-active modular films to achieve artificial photosynthesis is 
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merging amphiphilic properties to antennae components. The significance of 

ruthenium bipyridyl complexes towards water oxidation catalysts prompted us 

to coordinate well-established bidentate amphiphilic ligands (earlier investigated 

with the Cu2+ ion in our group) to the photo-responsive [Ru(bpy)2]2+ to yield 

metalloamphiphiles with rich electronic and electrochemical features. Chapter 

5 discusses in detail the target of preserving the amphiphilic and photophysical 

properties of these new ruthenium(II)-containing metallosurfactants while 

expanding the redox behavior with the presence of ligand moieties such as 

phenolates. 

 

Goal #4: To expand our current use of redox-active moieties by exploiting 

ligands containing amino-catechols. Current motivations focus on bringing 

into play the capacity of noninnocent ligands to enhance the reaction chemistry 

of coordination compounds. With the ability to store electrons, such ligands can 

act as electron reservoirs in complexes containing inexpensive first-row 

transition metals to essentially eliminate the use of noble transition metals to 

mediate multielectron catalytic transformations. The amino-catecholate 

chemistry of Chapters 6 and 7 was initiated by attempts to expand the 

electrochemical response of our previously used phenoxyl radical based systems 

by tailoring our phenanthroline ligand platforms to include a more air stable 

redox-active moiety. 
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CHAPTER 2 

EXPERIMENTAL AND CHARACTERIZATION TECHNIQUES 

2.1. General     

Reagents and solvents were used as received from commercial sources. Methanol 

was distilled over CaH2. Infrared spectra were measured from 4000 to 400 cm−1 on a 

Tensor 27 FTIR spectrophotometer as KBr pellets. 1H– and 13C–NMR spectra were 

measured with Varian 300 and 400 MHz instruments. ESI(+) spectra were measured in a 

triple quadrupole Micromass QuattroLC mass spectrometer with ESCi source. A Bruker 

7.0T ApexUltra FTMS with an Apollo 2 Dual Source was used to measure the ESI(+) 

spectrum of the [FeII(FeIII(L2)3](PF6)2 species in Chapter 4. This sample was dissolved in 

methanol at a concentration of 1 mg/mL then diluted 1:100–1:1000, externally calibrated 

with NaTFA, and analyzed at a flow rate of 180 mL/min from m/z 300–3500. Elemental 

analyses were performed with the addition of V2O5 to ensure complete combustion by 

Midwest Microlab, Indianapolis, IN. 

Absorption UV−visible spectroscopy from 1.0 × 10−2 to 5.0 × 10-6 M acetonitrile, 

dichloromethane, dimethylformamide, or dichloromethane/methanol (1:1) solutions were 

performed using a Cary 50 spectrometer within the 250 to 1100 nm range. Fluorescence 

excitation and emission spectra were measured on a Cary Eclipse fluorescence 

spectrophotometer. Lifetime measurements were recorded using a Hamamatsu R9220 

type photomultiplier tube and decay traces were collected using a National Instruments 

PCI-5154 digitizer. Samples were excited using a Photochemical Research Associates 

Inc. nitrogen/dye laser combination LN1000 and LN107, respectively. Lifetimes were 

determined by single exponential fitting of the luminescence decay traces. Cyclic 
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voltammetry experiments were performed in 1.0 × 10−3 M dry acetonitrile or 

dichloromethane analyte solutions containing 0.1 M TBAPF6 supporting electrolyte using 

a BAS 50W voltammetric analyzer at various scan rates (mV s−1). A standard three-

electrode cell was employed with a carbon or platinum working electrode, a platinum-

wire auxiliary electrode, and an Ag/AgCl reference electrode (freshly coated) under an 

inert atmosphere at RT. All potentials are reported versus the Fc+/Fc internal standard 

reference couple.1 The first derivative X–band EPR spectrum of a 1.0 x 10–3 M 

CH2Cl2/CH3OH (1:1) solution was measured with a Bruker ESP 300 spectrometer at 115 

K using a liquid N2 cryostat. X–ray diffraction data were measured using a Bruker 

P4/CCD or a Bruker X8 APEX-II kappa geometry diffractometer with Mo radiation and 

a graphite monochromator. 

Photolability studies were performed with a highly intense T-type halogen source 

(500 W) without use of an UV cutoff filter by irradiation of dissolved samples of the 

[(LPyI)RuII(bpy)2](PF6)2, [(LPyA)RuII(bpy)2](PF6)2, and [(LPhBuI)RuII(bpy)2](PF6) 

metalloamphiphiles in Chapter 5. Photoirradiation of each sample at 1.0 × 10−3 M 

concentrations occurred in a 25 mL round-bottom flask, fitted with a reflux condenser, 

under argon blanketing and stirring for a time period of 40 min while keeping constant 

the exposure intensity of irradiation. During this time period, aliquots were analyzed at 

times t = 0, 3, 20, and 40 min by UV−visible spectroscopy and mass spectrometry. 

Electronic structure calculations were carried out either by Dr. Marco M. Allard 

in the Verani Lab for Chapters 3–5 or Dr. Richard L. Lord under the supervision of Prof. 

H. Bernhard Schlegel for Chapters 6 and 7 with the Gaussian 09 suite of programs2 

using DFT. In general, calculations with the B3LYP3−5 functional employed the 
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LANL2DZ6 basis set and pseudopotential. Since all of the ground states were closed shell 

singlets, calculations were carried out with spin restricted methods. Tight self-consistent 

field (SCF) convergence (10−8 rms for the density) was used throughout. Geometries 

were fully optimized without symmetry constraints, and stationary points were verified 

via frequency analysis. Solvent effects in acetonitrile were estimated using the IEF-PCM 

polarizable continuum model.7−9 Molecular orbitals were plotted with GaussView.10 

Isothermal compression and Brewster angle microscopy monolayer studies were 

performed in our lab by Dr. Sarmad S. Hindo for the compounds in Chapter 3 or Rama 

Shanmugam for the complexes in Chapters 4 and 5 using an automated KSV 200 mini 

trough at room temperature (23.0 ± 0.5 ˚C). Ultrapure water (Barnstead NANOpure) with 

a resistivity of about 18.2 MΩ/cm was used as the subphase in all of the experiments with 

the exception of compounds [(LPyI)RuII(bpy)2](PF6)2 and [(LPyA)RuII(bpy)2](PF6)2 in 

Chapter 5. These species were found to be partially soluble in the pure water subphase, 

therefore a 0.1 M NaCl solution (pH ≈ 5.0) was prepared using ultrapure water 

(Barnstead NANOpure) with a resistivity of about 18.2 MΩ·cm−1 and was used as the 

subphase in each of the experiments. Universally, the surface of the subphase was 

cleaned by vacuum suction after barrier compression. Spreading solutions of a known 

concentration (1.0 mg·mL−1) and a known quantity (30 μL), prepared in spectra grade 

chloroform, were then introduced on the clean aqueous subphase. The system was then 

allowed to equilibrate for 15 min before monolayer compression. The compression 

isotherms were obtained at a compression rate of 10 mm·min−1. The surface pressure was 

measured using the Wilhelmy plate (paper plates 20 mm × 10 mm) method. The selected 

isotherms represent the average of at least three independent measurements with 
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excellent reproducibility. Brewster angle micrographs were taken simultaneously with the 

compression isotherms using a KSV–Optrel BAM 300 equipped with a HeNe laser (10 

mW, 632.8 mm) and a CCD detector. The field of view was 800 × 600 μm and the lateral 

resolution was about 1 μm. Since these methods were extensively used in the 

experimental research to follow, a brief review of these methods is offered: Langmuir–

Blodgett (LB) film preparation begins with the measurement of the amphiphilic behavior 

of the surfactant monolayer at the air/water interface. After spreading the amphiphile, the 

monolayer can be compressed by displacing moving barriers on a minitrough closer to 

each other. The KSV computer controlled minitrough operates with two compressing 

barriers. The compression isotherms for the novel amphiphiles described will be 

measured using the Wilhelmy plate technique, which plots surface pressure (π) vs. area 

occupied per molecule (A2). The area A2 can be accurately determined from the enclosed 

area between movable barriers and the concentration of the surfactant initially loaded. 

The knowledge of the 2D phase diagram for each molecular precursor is essential. It 

allows to access the desired 2D phase of the monolayer and to control the molecular 

order in the film. Furthermore, the compression isotherms yield fundamental information 

regarding the effect of the sub-phase aqueous solution on the organization of the 

monolayer, such as the limiting area per molecule (Alim), the area at the collapse of the 

monolayer (Ac), and the collapse pressure (πc). Similar to the behavior of liquid crystals, 

these monolayers can possess a large number of mesophases with different orientation or 

rotational degrees of freedom for the molecules. Brewster angle microscopy,11,12 is a 

complimentary technique that gives information about this phase behavior. A Brewster 

angle is associated with p-polarized light, where a reflectivity coefficient vanishes at the 
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Brewster angle with no light being reflected, and the typical domain size observed is 

between 20–200 micrometers. The air/water monolayers with the desired order and 

molecular patterns will be transferred onto solid substrates using LB deposition. The 

transfer ratio (area occupied by the monolayer on the water sub-phase vs. area of the 

transferred monolayer on the solid substrate) can be measured accurately, addressing the 

issue of how well the monolayers are transferred onto the substrates. A transfer ratio of 

1.00 indicates full transfer. All films discussed here show total-reflectance between 0.98–

1.05 Langmuir monolayers can be transferred reproducibly, with the transferred motif 

being a close representation of the monolayer at the air/water interface.   

The X–ray absorption near edge structure (XANES) and extended X–ray 

absorption fine structure (EXAFS) data of solid samples of [FeII(FeIII(L2)3](PF6)2 and 

[FeIII(L2)] in Chapter 4 was collected by Prof. Jason M. Shearer (Department of 

Chemistry, University of Nevada, Reno, NV). The samples were diluted in nujol (final 

concentration of Fe ~ 0.5 M), ground into a fine homogeneous paste, and packed into 

aluminum sample holders with Kapton tape windows. Data were collected at the National 

Synchrotron Light Source (Brookhaven National Laboratories; Upton, NY) on beamline 

X3b. A focused Si(111) double monochrometer was used for energy selection along with 

a low-angle Ni mirror for harmonic rejection. Energy calibrations were performed by 

recording a reference spectrum of Fe foil (first inflection point assigned to 7111.2 eV) 

simultaneously with the samples. All samples were maintained at 20 K throughout the 

data collection using a helium Displex cryostat. The spectra for the solid state samples 

were recorded in transmission mode (N2(g) filled ionization chambers). For edge spectra, 

the primary hutch aperture height was set to 0.4 mm to obtain the maximum resolution 
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(theoretical maximum is ~0.7 eV) and data were obtained in 10 eV steps in the pre-edge 

region (6960–7100 eV), 0.3 eV steps in the edge region (7100–7126 eV), and 2.0 eV 

steps in the near-edge region. For EXAFS spectra, the primary hutch aperture was set to 

0.8 mm and data were obtained in 5.0 eV steps in the pre-edge region (6950–7100 eV), 

0.5 eV steps in the edge region (7100–7126 eV), 2.0 eV steps in the near-edge region 

(7126–7611 eV), and 5.0 eV steps in the far-edge region (7611 eV–15.5 k). All spectra 

represent the averaged sum of three data sets. Data analysis was performed with the XAS 

refinement package EXAFS123.13 Phase (α) and amplitude (f) functions were generated 

with FEFF 7.02 as previously described14,15 using crystallographic data from [FeIII(L2)] 

and [FeII(phen)3]2+. All of the nomenclature and error analysis used conforms to generally 

accepted usage based on the recommendations of the International Workshops on 

Standards and Criteria in XAFS.16 

Standard spectrometric, spectroscopic, electrochemical, and diffraction methods 

mentioned used in the Verani Group for extensive characterization of inorganic species 

will not be discussed in further detail. Cyclic voltammetry (CV) warrants some 

discussion because of the emphasis placed on the redox response throughout the 

experimental research to follow. In addition, the aspect of emission spectroscopy 

becomes relevant with the investigation of the photoresponsive properties of ruthenium 

bipyridyl complexes and will also be described in some detail. 

2.2. Cyclic Voltammetry 

 The electroanalytical technique of cyclic voltammetry (CV), or linear sweep 

voltammetry, is practical in the qualitative investigation of the electron transfer behavior 

of a solution system from the current-potential response within an electrochemical cell. 



www.manaraa.com

13 
 

Widespread applications include the detailed mechanistic evaluation of 

reduction/oxidation properties associated with biomimetic enzymatic catalysts,17 the 

identity of reaction intermediates, ligand effects on redox potentials in metal-containing 

complexes,18,19 biosynthetic reaction pathways,20 and the electrochemical formation of 

free radicals.21 In the course of a typical cyclic voltammetric experiment, a standard 

three-electrode potentiostat is employed with a working electrode, an auxiliary electrode, 

and a reference electrode all immersed in a purged supporting electrolyte solution 

containing a dissolved analyte species of interest. A cyclic voltammogram, as illustrated 

in Figure 2.1 where one complete redox cycle is depicted, is generated from the ensuing 

current response that is measured while the applied potential at the working electrode is 

cycled at various scan rates.  

 

 

 

 

 

 

 

 

 

 

At point W, the initial potential is applied to the example system and the forward negative 

scan of the potential advances until a cathodic current is reached for reduction to begin. 

 

Figure 2.1. Sample cyclic voltammogram (adapted from reference 22) 
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The observed current increases sharply to point X at which stage the electrode surface 

concentration of the original species is significantly lessened. As the species dissolved in 

solution surrounding the electrode surface convert to the fully reduced form, the current 

diminishes to point Y. At this potential only the reduced form of the initial species is 

present in solution and the reverse positive scan progresses until an anodic current is 

attained for oxidation to occur. The observed current decreases abruptly to point Z at 

which period the surface of the electrode is appreciably depleted of the reduced species. 

The current decays back to point W as the species dissolved in solution nearby the surface 

of the electrode revert back to the fully oxidized form.22 

In an overall electrochemical transfer, in which the observed current is dependent 

upon the variable rates of mass and electron transfer from the bulk solution to the surface 

of the electrode, the Nernst equation (Equation 2.1) relates the equilibrium of the 

concentrations of reduced (red) and oxidized (ox) analyte species.23  

 

E = Eo' – (0.05916/n) ln([red]/[ox])  Eq. 2.1 

 

Here, E is the applied electrode potential, the formal reduction potential is Eo', and n 

represents the amount of electrons transferred in each molecule. Labeled in the cyclic 

voltammogram (Figure 2.1) are the parameters necessary to quantify the electrochemical 

process in order to describe the behavior observed. These include, Epc and Epa, for the 

respective cathodic and anodic peak potentials, as well as ipc and ipa, which represent the 

cathodic and anodic peak currents, correspondingly. To define a redox couple as an 

electrochemically reversible process whereby efficient concentrations of reduced and 
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oxidized species are kept at equilibrium at the surface of the electrode: (i) the potential 

peak separation, ΔEp = | Epa – Epc |, is approximately 59/n mV at 25 oC for all scan rates 

with n number of electrons, (ii) the peak potentials remain unchanged when varying the 

scan rate, (iii) the cathodic and anodic peak currents are proportional to v1/2, where v is 

the scan rate,19 and (iv) the ratio of peak currents, | ipa/ipc |, is equal to 1.0 at all scan 

rates.24 Voltages are tabulated as half-wave potentials, E1/2 = ½(Epa + Epc), versus the 

Fc+/Fc internal standard reference couple.1 

2.3. Photoluminescence Spectroscopy  

The phenomenon of molecular photoluminescence is observed as either 

fluorescence or phosphorescence subsequent to the excitation of a molecule that has 

absorbed photons of electromagnetic radiation. Emission of a photon accompanies the 

deactivation process from an electronically excited state to the ground state, whereby a 

molecule exhibits luminescence. Molecular absorption of radiation happens on the order 

of 10–15 s, whereas the rate of emission, or lifetime, averages from less than 10–5 s for 

fluorescence and 10–4 to 10 s for phosphorescence.22 Differences between these forms of 

emission derive from distinct excited state spectroscopic multiplicities. As depicted in 

Figure 2.2, an electron can be promoted from the ground singlet state to an excited 

singlet state or triplet state.  

 

 

 

 

Figure 2.2. Electron spin and singlet/triplet 
excited states (adapted from reference 22) 
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For the case of the excited singlet state, the electron spins remain opposite and thus 

paired. The triplet state, in contrast, has unpaired electrons with equivalent spins. 

Fluorescence is shorter-lived because no change in multiplicity occurs and the singlet → 

singlet transition is not forbidden. On the other hand, in the photo-active systems 

investigated in Chapter 5, phosphorescence becomes relevant and arises from the change 

in multiplicity. As illustrated in Figure 2.3, a molecule first absorbs photons of radiation 

and excitation from the ground singlet state, S0, to the excited singlet state, S1, proceeds.  

 

 

 

 

 

 

 

 

 

This S1 excited state species can undergo intersystem crossing, or reversal of the spin of 

an excited electron, to the excited triplet state T1, where the S1 and T1 potential energy 

curves intersect. Such forbidden transitions in multiplicity become plausible because of 

spin-orbit coupling in the presence of heavy atoms, making the rate of these transitions 

 

Figure 2.3. Potential-energy curve for phosphorescence (adapted 
from reference 25) 
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slower. The excited triplet species must once again change multiplicity in the return 

triplet → singlet transition. It is in this process that a photon is emitted and 

phosphorescence occurs.23,25 
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3.1. Introduction 

Molecular architectures displaying cooperativity among transition metals and 

amphiphilic organic scaffolds combine unique geometric, electronic, redox, and magnetic 

behavior1–4 with distinctive ordering morphologies. The approach has been used with 

impressive results in the design of soft materials with thixotropic,5 mesogenic,6 

ionophoric,7 luminescent,8 and micellar9 properties. This fact points out to the potential 

role of discrete metallosurfactant materials in the emerging field of responsive thin 

films.10–12 However, metallosurfactants (i.e., surfactants containing metal ions) are 

usually assembled at the air/water interface without isolation of the precursors. As a 

consequence, lack of precise control in (i) the surfactant-to-metal ratio, (ii) the 

coordination modes and the final structure of the material, and (iii) protonation 

preferences limit reproducibility leading to adventitious defects. Therefore having well 

defined, isolated, and characterized precursors is of paramount importance. Nevertheless, 
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the small body of work available on the isolation and air/water interface behavior of 

metallosurfactant precursors still poses a major drawback to the approach.13,14 

At the forefront of this area, our group has focused on synthetic, modeling, and 

surface protocols involving the incorporation of magnetic μ-oxo-Cu4 clusters in 

Langmuir–Blodgett films,15,16 the observation of distinctive collapse mechanisms on 

cobalt(II) films,17 and the design of redox-active copper-containing amphiphiles.18,19 In a 

series of studies with iron(III),20 cobalt(II/III),21 and gallium(III)22 we have demonstrated 

that structural and electronic effects can determine the preferential geometry of redox-

active asymmetric NN′O ligands in [ML2] metallosurfactants. Structural rigidity of the 

ligand takes precedence to the electronic configuration of the metal ion and favors 

meridional coordination when asymmetric amines and imines are compared. On the other 

hand, electronic configuration is a determining factor when flexible amines are involved; 

a facial coordination mode is preferred, and the metal dictates the preferential cis or trans 

orientation of equivalent phenolates and other donor sets in vicinal ligands. 

Consequently, 3d5 high-spin configuration leads to cis-arrangement while 3d6 low-spin 

and 3d7 high-spin ions support trans-orientation. Gallium(III), with 3d10 configuration, 

does not seem to exhibit a clear preference. These observations are serving as guidelines 

to the design of metal-containing amphiphiles for redox-responsive Langmuir–Blodgett 

films. 

In this chapter, we describe the synthesis and amphiphilic behavior of nickel(II), 

copper(II), and zinc(II) complexes with an asymmetric NN′O ligand. Due to the 3d8–10 

electronic configurations found in these bivalent metal ions, stoichiometric preferences, 

coordination modes, and ligand protonation status can lead to distinct [MII(HL)X]2+, 
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[MII(L)X]+, [MII(L)2]o, [MII(HL)(L)]+, and [MII(HL)2]2+ products (Scheme 3.1). Because 

of the waxy texture of most of the resulting metallosurfactants, archetypical modeling 

(i.e., the investigation of a series of discrete complexes that retain key structural and 

electronic attributes) was used to assess the nature of these products. A careful 

comparison between the stoichiometric and protonation status and the amphiphilic 

behavior is offered. 

 

Scheme 3.1. The ligand HLtBuODA, possible protonation 
status for metallosurfactants and archetypes studied. 

 
3.2. The Ligands 

Condensation of 1-octadecylamine with 2-pyridinecarboxaldehyde in methanol 
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precursor that was treated with 2,4-di-tert-butyl-6-(chloromethyl)phenol to generate the 

ligand HLtBuODA. Similarly, the archetypical ligands were synthesized with 80–85 % 

yields following literature procedures17,20,21 and characterized by means of ESI mass 

spectrometry, 1H–NMR, and infrared spectroscopy. 

3.3. The Metallosurfactants 

Treatment of the ligand HLtBuODA with several metal salts yielded products with 

textures varying from waxy to solid. Compound [NiII(LtBuODA)(OAc)] (1) was isolated 

upon complexation in methanol of HLtBuODA with nickel(II) acetate tetrahydrate in a 1:1 

ligand-to-metal ratio. Similarly, treatment of the ligand with hexahydrated perchlorate 

salts of nickel(II), copper(II), or zinc(II) in a 2:1 ratio yielded [NiII(LtBuODA)2] (2), 

[CuII(HLtBuODA)(LtBuODA)]ClO4·CH3OH (3), and [ZnII(HLtBuODA)2](ClO4)2 (4), 

respectively. Triethylamine was used as a base to assist phenol deprotonation in all cases. 

The waxy constitution of compounds 1 and 2 precluded elemental analysis as a tool for 

characterization. The ESI mass analysis of 1 indicates the presence of peak clusters at m/z 

= 635.4 and m/z = 695.4 corresponding respectively to [Ni(LtBuODA)]+ and 

[Ni(LtBuODA)(OAc) + H]+. The former peak is favored at higher cone voltages, whereas 

the latter is more abundant at lower cone voltages. Similarly, 2 shows a peak cluster at 

m/z = 1214.0 providing evidence for species such as [Ni(LtBuODA)2 + H]+ or 

[Ni(HLtBuODA)(LtBuODA)]+. The use of triethylamine in the synthetic procedure, as well as 

the absence of infrared peaks at 1090 cm–1 for perchlorate counterions, supports that the 

ligands are fully deprotonated and that the singly charged peak observed is formed in 

situ. The ESI mass analysis of 3 suggests the formation of the cationic species 

[CuII(HLtBuODA)(LtBuODA)]+ with a peak cluster at m/z = 1219.0. Likewise, 4 shows a peak 
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cluster at m/z = 1220.0 implying the formation of the species [ZnII(HLtBuODA)(LtBuODA)]+. 

Additional interpretation of the fragmentation patterns suggests the existence of the 

species [ZnII(HLtBuODA)2]2+, as confirmed by a prominent peak cluster at m/z = 641.5 for 

the species [ZnII(HLtBuODA)2 + CH3OH]2+. This dicationic species is particularly visible at 

low cone voltages. The peak clusters of interest were simulated and agree well in their 

patterns, positions, and isotopic distributions, and substantiate the behavior of the metal 

ions. These spectrometric profiles are shown in Figure 3.1.  

 

 

Figure 3.1. ESI(pos) peak clusters with experimental (bars) and simulated 
(continuum) isotopic distributions for 1–4. The relative abundance axis of each 
complex is omitted for clarity. 
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Infrared analysis further suggests metal coordination by the sharp doublet of the C=N 

bonds in pyridine rings between 1590–1570 cm–1. These peaks are shown broadened and 

shifted in the spectra of the compounds, along with the presence of characteristic C–H 

stretching contribution of the alkyl chain and tertiary butyl groups from the ligand. 

Additionally, 1 shows an antisymmetric stretch at 1574 cm–1 for its coordinated acetate. 

While the neutral compound 2 lacks a perchlorate peak, 3 and 4 display strong Cl–O 

stretchings at ca. 1105 cm–1, indicative of the presence of perchlorate counterions. 

Because precipitates were isolated for 3 and 4, elemental analyses were carried out and 

are in good agreement with these formulations. 

3.4.The Archetypes 

Archetypical modeling was used in order to correlate the amphiphilic behavior 

observed for 1–4 with detailed structural information. A series of discrete complexes was 

studied in which the long alkyl chain is replaced by a hydrogen atom, whereas other key 

features like the chelating headgroup are left unchanged. These species were synthesized 

using perchlorate salts analogously to the metallosurfactants above, and are described as 

[NiII(LtBuI)(OAc)]·CH3OH (5), [NiII(LA)2]·CH3OH·H2O (6), [NiII(LtBuA)2]·2CH3OH (7), 

[CuII(HLtBuA)(LtBuA)]ClO4 (8), and [ZnII(HLtBuA)(LtBuA)]ClO4 (9). The archetypical 

ligands HLtBuI, HLA, and HLtBuA are depicted in Scheme 3.2. Species 7 has been recently 

studied by Thomas et al.,23 along with a series of related [NiII(NN′O)2] complexes, but no 

X–ray structure was available. Elemental analyses of the compounds 5–9 are in excellent 

agreement with theoretical percentages, and the ESI(pos) mass spectra exhibit distinct 

m/z = [MII(L)2]+ and [MII(HL)(L)]+ peaks in methanol. Peak cluster simulation of these 

archetypes parallel those obtained for the metallosurfactants 1–4, reinforcing the notion 
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that the expected ligand-to-metal ratios were achieved. The neutrality of the nickel(II) 

complexes, as well as the presence of protonated ligands, is once again confirmed by the 

respective absence or presence of a peak associated with the perchlorate counterion at 

around 1100–1090 cm–1 in their IR spectra. 

 

Scheme 3.2. The ligands HLtBuI, HLA, and HLtBuA used in the archetypes. 
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3.5. Molecular Structures and Coordination Modes 

Discrete mononuclear crystals of archetypes 5–9 were structurally resolved by X–

ray diffraction. The ORTEP diagrams are displayed in Figures 3.2–3.6, and selected 

bond lengths and angles summarized in Table 3.1. 

 

 

 

Figure 3.2. ORTEP diagram at 50% probability for [NiII(LtBuI)(OAc)]·CH3OH (5). 
Solvent and hydrogen atoms are excluded for clarity. 
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Figure 3.3. ORTEP diagram at 50% probability for [NiII(LA)2]·CH3OH·H2O (6). Solvents 
and hydrogen atoms are excluded for clarity. 
 

 

Figure 3.4. ORTEP diagram at 50% probability for [NiII(LtBuA)2]·2CH3OH (7). Solvents 
and hydrogen atoms are excluded for clarity. 
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Figure 3.5. ORTEP diagram at 50% probability for [CuII(HLtBuA)(LtBuA)]ClO4 (8). 
Counterions and hydrogen atoms are excluded for clarity. 
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Figure 3.6. ORTEP diagram at 50% probability for [ZnII(HLtBuA)(LtBuA)]ClO4 (9). 
Counterions and hydrogen atoms are excluded for clarity. 
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Table 3.1. Selected bond lengths (Å) and angles (o) for 5, 6, 7, 8’, and 9. 

5 6 7 8’ 9 

Ni1-O1       1.8215(9)   
Ni1-N1       1.8416(10)  
Ni1-N2       1.8863(10) 
Ni1-O2       1.8840(8)     
 

Ni1-O1     2.0916(17)         
Ni1-N1     2.0829(18)   
Ni1-N2     2.1119(19) 
 

Ni1-O1      2.0869(13)  
Ni1-N1      2.1039(16)  
Ni1-N2          2.1117(17) 

Cu1-O1        1.9501(15) 
Cu1-N2        1.9938(18) 
Cu1-N4        2.0419(19) 
Cu1-N1        2.0609(19) 
Cu1-N3        2.2708(19) 
 

Zn1-O1           1.960(3)  
Zn1-N3           2.074(4)  
Zn1-N2           2.141(4)  
Zn1-N1           2.147(4)  
Zn1-N4           2.175(4) 

Bite Angles Bite Angles Bite Angles Bite Angles Bite Angles 

O1-Ni1-N1     94.87(4)  
N1-Ni1-N2        85.72(4)   

O1-Ni1-N2     89.60(7)  
N1-Ni1-N2        79.86(7) 

O1-Ni1-N2    89.66(6)  
N1-Ni1-N2    80.12(6) 
 

O1-Cu1-N2      93.01(7) 
N2-Cu1-N1      81.02(7) 
N4-Cu1-N3      79.21(7) 
 

O1-Zn1-N2    94.10(13) 
N2-Zn1-N1    78.96(15) 
N3-Zn1-N4    80.44(14) 
 

Average Distances Average Distances Average Distances Average Distances Average Distances 

Py C – C    1.3856(18)       
Py C – N    1.3534(15)                         
Ph C – C        1.4081(16) 

Py C – C        1.3835(3)         
Py C – N        1.3395(3)                            
Py C – C        1.3933(4) 

Py C – C       1.371(3)            
Py C – N       1.347(2)                       
Ph C – C       1.3975(3)    

Py C – C        1.381(3)                    
Py C – N        1.345(3)                            
Ph C – C        1.398(3) 

Py C – C         1.374(8)                    
Py C – N         1.346(6)                                     
Ph C – C         1.396(7) 
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3.5.1. The Nickel Archetypes 5, 6, and 7. The coordination environment for the 

nickel(II) metal center in complex 5 approximates a square-planar geometry with the 

deprotonated ligand (LtBuI)– meridionally coordinated through an NN′O donor set of 

Nimine and Npyridine, and Ophenolate atoms, along with a deprotonated terminally coordinated 

acetate group occupying the fourth position. Both trans angles are smaller than 180°, thus 

confirming a distorted square-planar geometry. The bond angles and lengths at the metal 

center agree with literature values of mono-substituted imine complexes with similarly 

organized donor frameworks. For example, the Ni–Ophenolate, Ni–Oacetate, and Ni–Nimine 

bonds herein are 1.82, 1.88 and 1.84 Å, respectively, closely resembling the values found 

for the complex [Ni(L)(OAc)], where L is the deprotonated form of the 6-[(E)-({[(2S)-1-

benzylpyrrolidin-2-yl]methyl}imino)methyl]-2-tert-butyl-4-methylphenol.24 Finally, it is 

noteworthy that the ligand (LtBuI)– in 5 is definitely an imine, as evidenced by the short 

bond length between C7–N1 (1.30 Å). Even though the ligand (LtBuODA)– in 1 is more 

flexible than that in 5 and could possibly adopt a facial conformation in a tetrahedral 

coordination sphere, the preferential coordination modes of a low-spin 3d8 ion like 

nickel(II) should favor a square-planar geometry. Therefore, 5 provides an acceptable 

model for the coordination environment for the surfactant 1. 

Complexes 6 and 7 are intended to act as archetypical models for species 2, which 

displays two fully deprotonated ligands (LtBuODA)– and neutral character. In fact the 

results observed for both archetypes with ligands (LA)– for 6 and (LtBuA)– for 7 give 

consistent information about the coordination modes of NN′O ligands around nickel(II). 

The coordination geometries resemble those observed for cobalt(III/II) complexes 

recently reported by this group.17,21 These structures are arranged pseudo-octahedrally in 
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an approximate D2h local symmetry about the nickel(II) center, coordinated by two 

deprotonated, facially coordinated ligands. Hence, 6 and 7 are described in BMT25 

notation as [Ni <Nam1Nam2> <Npy1Npy2> <Ophen1Ophen2>]. The Ni–Namine bond lengths 

consistently measure 2.11 Å, while the Ni–Ophenolate bond lengths are 2.09 Å and the Ni–

Npyridine bond lengths are 2.08 and 2.10 Å. The six-coordinate geometry and absorption 

spectra (vide infra) indicate the presence of a high spin 3d8 ion.23,26 On the basis of the 

structures of these two archetypes, an accurate picture of the coordination modes present 

in 2 can be drawn. 

3.5.2. The Copper Archetype 8′. By means of counterion exchange, single 

crystals of the complex [CuII(HLtBuA)(LtBuA)]B(Ph)4 (8′) were obtained from the 

perchlorate parent species 8 to gather comparative information about the coordination 

modes and geometrical parameters of the copper-containing surfactant 3. It contains a 

discrete [CuII(HLtBuODA)(LtBuODA)]+ cation in which a single ligand is deprotonated, 

whereas another one remains protonated. Therefore, the coordination sphere around the 

copper(II) center in 8′, and consequently in 8 and 3 as well, approximates a distorted 

N2N2′O square-pyramidal geometry (τ = 0.34)27 in which the protonated Ophenol assumes a 

remote position (viz. Cu1···O2 > 3.80A). The angles between adjacent corner atoms of 

the basal plane (O1–Cu1–N2 93.0°, O1–Cu1–N4 91.2°, N1–Cu1–N4 92.4°, and N2–

Cu1–N1 81.0°) are consistent with pseudo-square pyramidal inter-plane angles 

approximating 90°, where the atoms O1, N4, N1, and N2 are situated on the vertices of 

the plane, while the pyridine nitrogen, N3, is apically coordinated to the copper center 

(2.27 Å). The trans amine nitrogen to opposing amine nitrogen bond angle is 152.4° and 

the trans phenolate oxygen to pyridine nitrogen bond angle is 173.0°, leaving the bond 
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angles comprising the apical pyridine nitrogen (O1–Cu1–N3 98.3°, N2–Cu1–N3 126.9°, 

N4–Cu1–N3 79.2°, and N1–Cu1–N3 88.2°) to reveal the degree of structural distortion. 

The increased copper to apical pyridine nitrogen bond length (2.27 Å) grants further 

evidence concerning the structure: the phenol group is neither bonded nor contributing 

structurally to the rigidity of the system. The other pyridine is situated cis to this apical 

pyridine with a Cu–N distance of 2.06 Å. Also occupying cis positions are the Ophenolate 

atom (Cu1–O1 1.95 Å) and the Namine atom (Cu1–N2 2.0 Å) of the deprotonated ligand. 

In addition, the Namine of the protonated ligand is positioned trans (Cu1–N4 2.04 Å) to its 

opposing Namine of the deprotonated ligand. These bond lengths are in good agreement 

with reported values.28,29 

 3.5.3. The Zinc Archetype 9. Analogous to the copper(II) center in the 

archetypical systems 8 and 8′, the zinc(II) metal center in complex 9 bears ligand 

coordination through an N2N2′O donor set consisting of two tertiary amine and pyridine 

nitrogen atoms, and a single deprotonated phenolate oxygen atom. Similarly, the second 

phenol oxygen atom is protonated and lies 3.42 Å from the metal center. Calculation of 

the relative amount of trigonality reveals that the structural coordination geometry is 

more characteristic of trigonal bipyramidal geometry with a τ value of 0.79. The pseudo-

trigonal bipyramidal geometry of the complex demonstrates facial ligand coordination 

organized in an approximate C2v local symmetry, where the phenolate oxygen atom 

(Zn1–O1 1.96 Å) and pyridine nitrogen atoms (Zn1–N1 2.15, Zn1–N3 2.07 Å) are 

positioned on the vertices of the equatorial plane, and the trans tertiary amine nitrogen 

atoms are apically coordinated to the zinc center (Zn1–N2 2.14, Zn1–N4 2.17 Å). The 

angles at the zinc ion center around the equatorial plane are consistent with pseudo-
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trigonal bipyramidal inter-plane angles approximating the ideal 120° (O1–Zn1–N1 

128.41°, N1–Zn1–N3 114.29°, N3–Zn1–O1 117.24°), while the N2–Zn1–N4 axial bond 

angle is 175.98°, deviating slightly from 180° linearity. The range for the pyridine 

nitrogen to amine nitrogen axial-to-equatorial bond angles containing the zinc ion center, 

Nax–Zn–Neq, is 80–100°, and the amine nitrogen to phenolate oxygen axial-to-equatorial 

bond angle range at the zinc ion center, Nax–Zn–Oeq, is 89–94°. For purpose of contrast, it 

is interesting to consider the distinguishing features that exist between zinc complexes 

with local pseudo-trigonal bipyramidal geometries. For instance the cation 

[Zn(TMPA)(OBz)]+,30 where TMPA is tris[(2-pyridyl)methyl]amine and OBz is a 

benzoate ligand, is functionally comparable to 9. The TMPA-based complex exhibits a 

slightly elongated ZnII to axial Namine bond length (2.26 Å) along with shorter Zn–Npyridine 

distances, when compared to 9. The axial Zn–Obenzoate bond (1.95 Å), on the other hand, 

is nearly equivalent to the equatorial Zn–Ophenolate bond (1.96 Å) in 9. Equally relevant is 

the precise crystallographic work described by Neves et al.31–33 on zinc-phenolate 

ligands. It has been postulated that both the nature of the phenol ring substituent and the 

geometry adopted around the metal play a crucial role in the length of the Zn–Ophenolate 

bond. Unsubstituted ligands yield the longest bonds (2.15 Å), whereas bromo- and tert-

butyl-substituted phenolates yield comparable bonds reaching 1.90 to 1.96 Å, 

respectively. This is in good agreement with the value observed for 9. It is noteworthy 

that while most ligands yield [ZnL2] species, tert-butyl-substituted ligands are prone to 

form partially protonated [Zn(HL)(L)]+ species. This has been observed even when zinc 

acetate, which fosters phenol deprotonation, is used. Unfortunately, 9 does not seem to be 

a valid archetypical model for 4. The archetype possesses a single protonated ligand, 
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whereas elemental analysis and mass spectrometry support the presence of two 

protonated ligands in the surfactant. This is also consistent with an unusual collapse 

mechanism pattern observed in the Langmuir films of 4. 

3.6. Electronic Spectroscopy 

The electronic spectra of the ligands HLtBuODA and HLtBuA, surfactant complexes 1–4, 

and archetypes 5–9 were measured either in dichloromethane or in 1:1 solutions of 

dichloromethane/methanol. The results are summarized in Table 3.2 and selected spectra 

for the copper species 3 and 8 are shown in Figure 3.7. The ligands HLtBuODA and 

HLtBuA show expected similarities in the ultraviolet region, assigned to intense 

intraligand σ → π* and π → π* bands. 

 
 
Figure 3.7. UV–vis spectra of complexes 3 and 8 in dichloromethane, 1.0 × 10–4 M. Inset: 
3 and 8 at 1.0 × 10–2 M. 
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Table 3.2. UV–vis parameters for ligands and complexes. 
Compounds[a] λ (nm) / ε (Lmol-1cm-1)[b] 

Ligands: 
HLtBuODA 

HLtBuA 
 

 
263 (7290), 268 (7200), 280 (5600) 
262 (3750), 268 (3550), 282 (2990) 

Nickel species 
[NiII(LtBuODA)(OAc)] (1) 
[NiII(LtBuI)(OAc)]·CH3OH (5) 
[NiII(LtBuODA)2] (2) 
[NiII(LA)2]·2CH3OH (6) 
[NiII(LtBuA)2]·2CH3OH (7) 
 

288 (6180), 422 (860), 604 {11}[c]; 965 {8} 
261(6250), 348 sh (4030), 425, (915), 510 {10} 
264 (9350), 620 {31}, 965 {12} 
304 (8250), 605 {14}, 952 {5} 
306 (9220), 610 {18}, 960 {8} 

Copper species[d] 
[CuII(HLtBuODA)(LtBuODA)]ClO4·CH3OH (3) 
[CuII(HLtBuA)(LtBuA)]ClO4 (8) 
 

247 (18200), 287 (9340), 328 sh (4900), 498 (1060), 651 (660) 
241 (20900), 289 (9800), 474 (1140), 640 (490) 

Zinc species 
[ZnII(HLtBuODA)2](ClO4)2 (4) 
[ZnII(HLtBuA)(LtBuA)]ClO4 (9) 
 

263 (9540), 269 (8300), 290 (6340) 
240 (12530), 289 (4600) 

[a] Spectra measured in dichloromethane/methanol (1:1), unless otherwise noted. [b] Values for equivalent peaks within a similar group are sorted in columns. 
[c] All solutions are 1.0 × 10–4 M, except for values indicated in curly brackets where 1.0 × 10–2 M solutions were used. [d] Spectra measured in dichloromethane.
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Electronic information is also limited for 4 and 9 as a consequence of the intrinsic 

nature of the 3d10 zinc(II) ion. The interpretation of the spectra is restricted to the 

observation of comparable profile contours for the intraligand π → π* bands in both 

species. Assessment of the differences in coordination geometry revealed by mass 

spectrometry and elemental analysis was not possible. The square-planar 3d8 low-spin (S 

= 0) nickel(II) complex 1 reveals its nature with a medium-intensity band at 422 nm, 

attributed to a 1A1g → 1A2g spin-allowed d–d transition.34 The archetype 5 displays a 

similar, albeit slightly more intense, band at 425 nm, along with a ill-defined shoulder at 

348 nm. These features are less intense but comparable with those of low-spin 

[NiII(salen)],26 and attributed respectively to charge transfer and π–π* transitions. The 

nickel-centered d–d transitions are also comparable at 510 nm. The pseudo-octahedral 

nickel(II) species 2, 6, and 7 do not display this band and are characterized by less intense 

signals around 605–620 nm, (ϵ ≈ 20–30) and 950–965 nm (ϵ ≈ 5–15), respectively 

attributed to 3A2g → 3T1g(P) and 3A2g → 3T2g spin-allowed d–d transitions.35 This is in 

good agreement with the observation that lower wavelength absorption bands are 

associated with low-spin square planar electronic configurations, while higher 

wavelength bands are found for high-spin octahedral configurations.36 The positions of 

the observed absorptions in 1, 2, 5–7 indicate that in solution, 1 and 5 remain low-spin 

and 2, 6, and 7 remain high-spin. The high-spin (S = 1) nature of these species can be 

inferred by the presence of broad and ill-defined H1–NMR peaks, but EPR detection is 

precluded due to the presence of an integer spin associated to the approximate [eg
2 t2g

4] 

configuration (in an idealized Oh symmetry) for the NiII ion. Very recently Thomas et 

al.23 have isolated a series of nickel compounds related to the archetypes 6, and 7 



www.manaraa.com

42 
  

 

confirming the high-spin nature of pseudo-octahedral [NiII(NN′O)2] systems. The most 

noticeable parallel between the nickel(II) surfactant 2 and the archetypes 6 and 7 is the 

similarity in shape and wavelength ranges for the two overlaid spectral curves. This 

validates further the use of archetypical complexes in providing direct insight to the 

coordination mode and local geometry of the metal center in architectures of higher 

complexity. 

The agreement between the copper-containing surfactant 3 and archetype 8 is 

excellent. A broad band transition present at 498 and 474 nm, respectively in 3 and 8, is 

attributed to a well characterized37–39 phenolate → copper(II) charge-transfer transition. 

A lower intensity band centered at 640–650 nm is likely to have overlapping charge 

transfer and d–d band nature. The only evident deviation is the presence of a shoulder at 

328 nm in the spectrum of 3 and absent in 8. This shoulder is ascribed to a N(π) → CuII 

charge transfer observed for square-pyramidal copper(II) species.40 It is possible to 

hypothesize that the alkyl group attached to the Namine atom in 3 impinges a certain 

degree of distortion to the coordination environment around copper, thus causing 

bathochromic shifts. Indeed, all the charge-transfer bands in 3 seem to be red-shifted by 

about 10–20 nm. Therefore, the shoulder at 328 nm in 3 would be overlapped by more 

intense intraligand bands in 8. Similar shifts have been observed by our group in 

phenolate-containing copper amphiphiles with distinct apolar chains.18 

3.7. Electronic Structure Calculations 

A series of electronic structure calculations were carried out on archetypical 

nickel-containing 6, copper-containing 8, and zinc-containing 9, as well as on model 3′ (a 

model for the copper metallosurfactant 3 comprising of shortened alkyl chains). Attempts 
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to model 4 were made considering multiple different geometrical arrangements, but lack 

of convergence towards a satisfactory minimum preclude discussion at this time. Single 

point energy calculations on 6 were carried out with nuclear coordinates obtained directly 

from the crystallographic structure (see Figure 3.3 above). The optimized geometries for 

structures of 8 and 9 are in good agreement with the crystallographic data presented 

above. Structural and electronic properties were evaluated to gain insight on the binding 

modes of the amphiphilic complexes. A recent study on 723 supports the favorable trans 

facial coordination of the ligands over the meridional mode by ca. 5.0 kcal mol–1 using a 

comparable level of theory. Similar values were obtained for 6 suggesting that the 3d8 ion 

favors trans,fac coordination. 

 

Figure 3.8. Selected MOs and spin density plot for the archetype 6. 
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This is similar to the results observed for 3d7 ions, and in clear opposition to the 

preferred cis,fac observed for 3d5 ions. As shown in Figure 3.8, the spin density plot for 

the nickel archetype 6 is consistent with two unpaired electrons being arranged in the d x2–

y2 and d z2 orbitals and resulting in an S = 1 ground state. This triplet state is expected for 

six-coordinate high-spin bivalent nickel (3d8) complexes. The molecular orbital plots of 

the singly occupied orbitals, namely the SOMO (d x2–y2) and SOMO-1(d z2) orbitals are 

also available. The dipole moment for 6 is small in magnitude, reaching 0.10 Debye. This 

is not unexpected if the high symmetry of the all-trans binding mode of the ligands is 

taken into account, as it becomes clear by inspection of the spin density plot. 

The copper archetype 8 displays the SOMO consistent with a d x2–y2 orbital in 

good agreement with the expected behavior of a bivalent copper (3d9) ion in a five 

coordinate complex (Figure 3.9). Comparison between 8 and the model 3′ shows similar 

geometrical arrangement and comparable bond lengths and angles. An almost identical 

hydrogen-bonding mode between the phenolate-phenol oxygen atoms is also present. 

One noticeable difference is the presence of a longer Cu–Namine bond length for 3′ (ca. 

0.03 Å) as compared to that of 8. This lengthening must be associated with the change 

from a secondary amine in 8 to a tertiary amine in 3′, and corroborates with the 

observations from the UV–vis spectra. The model 3′ also displays a SOMO consistent 

with a d x2–y2 orbital. The spin density plots reinforce this notion. Both 3′ and 8 have 

comparable dipole moments of 13.9 and 13.7 Debye, respectively. Overall, the 

archetypical 8 can be considered in excellent agreement with model 3′, and therefore, 

with metallosurfactant 3. 

  



www.manaraa.com

45 
  

 

 

Figure 3.9. Selected molecular orbitals and spin-density plot for the optimized 
structures of the archetype 8 and model 3’. 
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Owing to their 3d10 configuration, the zinc complexes exhibit an S = 0 spin state. 

Consequently, 9 has no spin density plot and its frontier bonding orbitals are 

predominantly ligand-based (Figure A.3.1). This increase in ionic character can be 

reinforced by comparing the Mulliken charges in archetypes 8 and 9. An increase is 

observed in the Mulliken charge from 0.84 for the copper center in 8 to 0.94 for the zinc 

center in 9. Similarly, the copper-bound phenolate-oxygen shows a charge of –0.77, 

compared to –0.80 in the zinc-bound phenolate-oxygen. The increasing charge separation 

in 9 corroborates with a decreased covalent character. The dipole moment of 9 is on the 

same order of magnitude as for 3′ and 8, though slightly larger at 14.5 Debye. Refer to 

Table A.3.1 for the Cartesian coordinates for all DFT calculations. 

3.8. Amphiphilic Properties 

The amphiphilic properties of species 1–4 were studied by way of compression 

isotherms41 plotting surface pressure (Π, mN m–1) vs. average area per molecule [A (Å)2] 

and Brewster angle microscopy. Compression isotherms are performed in a minitrough 

with movable barriers and allow for two-dimensional activities that transpire at the 

air/water interface, which result in the formation of Langmuir films. The assessment of 

mono- or multilayers, collapse pressures (πc), limiting areas per molecule (Alim), and the 

area at the collapse of the monolayer (Ac) become evident. When the barriers of a 

minitrough are compressed, the tension (γ) of the amphiphile-containing air/water 

interface decreases as compared to that of the air/water interface only (γ0 = 72 mN m–1 at 

23 °C), following in an increase in Π (= γ0 – γ). When conducting compression isotherms 

in concert with Brewster angle microscopy, polarized light passes throughout media with 
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different refractive indexes at the air/water interface revealing agglomerates and domains, 

as well homogeneity in films. 

Species 1–4 resemble structurally a series of tert-butyl-substituted phenolate-

containing amphiphiles published recently by our group.18 The main difference is the 

presence of a methylpyridine arm attached to the Namine atom. Similarly, the ligand 

HLtBuODA used in this article is related to the ligand HLIODA with iodo groups occupying 

the 2nd and 4th position of the phenolate ring. This ligand stabilizes bivalent cobalt ions in 

the [CoII(LIODA)2] species.17 A detailed comparison among these species will be provided. 

The isotherms for 1–4 are shown in Figure 3.10 and present moderate collapse pressures.  

 
Figure 3.10. Langmuir–Blodgett isotherms of the metallosurfactants. 
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For 1, with a single alkyl chain and a higher dipole moment, the individual molecules 

start interacting at the air/water interface at around 85 Å2 molecule–1, whereas the 

molecules of 2, 3, and 4 interact at much higher areas of 185, 230, and 195 Å2 molecule–

1, respectively. Hence, species 2–4 are characterized by large average areas per molecule 

reflecting the trans arrangement of the alkyl chains. At least partially, the high areas 

observed for 3 and 4 are also related to the presence of a cationic core. However, no clear 

pattern can be observed correlating an increase in average areas with increasing core 

charge, since the monocationic 3 displays higher areas than the dicationic 4. In spite of 

the distinctive average areas, 1, 3, and 4 present similar profiles with an inflection point 

around 10–14 mN m–1 followed by a less steep compression pattern. Interestingly, species 

4 shows a much more accentuated decline, resembling the profile of a system with 

constant-pressure collapse,42 while 2 shows the opposite behavior, displaying a more 

steep isotherm after the inflection point at 18 mN m–1. This led to the suspicion that in 

spite of a continuous compression profile and lack of traditional collapse, the inflection 

point in these systems may coincide with folding, bending, and breaking into multilayers 

proposed by the Ries mechanism.43,44 Brewster angle microscopy was used to evaluate 

the homogeneity of the films and corroborates with the idea that agglomerates similar to 

those expected in multilayers exist after the inflection points. The results are shown in 

Figure 3.11, where it can be seen that for 1–4 flat domains coexist before compression at 

low surface pressures. Upon compression, seemingly homogeneous films are observed up 

to pressures that precede the inflection points, when the appearance of multiple ring-

shaped events predominates. These rings are multilayer granules formed from the 
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ejection of matter from the compressed monolayer when localized oscillations are present 

and account for the thermodynamic instability of the film.45 

 
 
 

Figure 3.11. Selected Brewster angle micrographs. For 1: (a) before compression, 
(b) between 1–10 mN m–1, (c) after 11 mN m–1. For 2: (d) before compression, (e) 
between 3–10 mN m–1, (f) after 11 mN m–1. For 3: (g) before compression, (h) 
between 2–12 mN m–1, (i) after 13 mN m–1. For 4: (j) before compression, (k) 
between 1–10 mN m–1, and (l) after 11 mN m–1. 

 
 

In an attempt to correlate structural and amphiphilic properties of 1–4, as well as 

to compare with other similar metalloamphiphiles the following conclusions can be 

drawn: It is evident that 2–4 have roughly twice the area per molecule than 1, this is due 

to the fact that 2–4 have two HLtBuODA ligands coordinated to the metal center, while 1 

contains a single ligand. The areas observed for 2–4 are the comparable to other tert-

butyl-substituted phenolate-containing amphiphiles.18 Replacement of these substituents 



www.manaraa.com

50 
  

 

by more polar groups, as well as the design of surfactants with a single alkyl chain as in 

1, seems to be necessary to achieve ordered films with higher collapse pressures. The 

nickel(II) complex 2 has a neutral octahedral core with two deprotonated (LtBuODA)– 

ligands, while copper-containing 3 has a five-coordinate monocationic core associated 

with one protonated HLtBuODA ligand, and zinc-containing 4 has a dicationic four-

coordinate core with both HLtBuODA ligands protonated. It seems that in moving from 

rigid octahedral cores as in 2 to more flexible cores in 3 and 4, a tendency toward 

constant-pressure collapse can be observed. This is in excellent agreement with the 

behavior observed for cobalt amphiphiles,18 in which increased core-flexibility also led to 

a constant-pressure collapse mechanism. Finally, it is not clear why 2 and 4 display 

similar average areas per molecule, while 3 shows higher areas. 

3.9. Summary and Conclusions 

In this chapter, we have synthesized and characterized the metallosurfactants 

[NiII(LtBuODA)(OAc)] (1) [NiII(LtBuODA)2] (2), [CuII(HLtBuODA)(LtBuODA)]ClO4·CH3OH (3), 

and [ZnII(HLtBuODA)2](ClO4)2 (4). Due to the waxy texture of some of the 

metallosurfactants and due to the inability of getting crystal structures for 1–4, 

archetypical modeling was used to assess the nature of these products. For this reason, 

species [NiII (LtBuI) (OAc)]· CH3OH (5), [NiII(LA)2]· CH3OH· H2O (6), 

[NiII(LtBuA)2]·2CH3OH (7), [CuII(HLtBuA)(LtBuA)]ClO4 (8), and [ZnII(HLtBuA)(LtBuA)]ClO4 

(9) were synthesized. Careful analysis of 5–9 allowed us to evaluate the relationship 

between stoichiometric, coordination, and protonation preferences in metallosurfactants 

1–4, and therefore, draw structure/amphiphilic function relationships. 
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The nickel(II) complex 1 is square planar, whereas 2 has a neutral octahedral core 

with two deprotonated (LtBuODA)– ligands. Copper-containing 3 has a five-coordinate 

monocationic core associated with one protonated HLtBuODA ligand, whereas the zinc-

containing 4 has a dicationic four-coordinate core with both HLtBuODA ligands protonated. 

DFT calculations were used to identify the frontier orbitals, polarizability, and dipole 

moments. In an attempt to correlate structural and amphiphilic properties of 1–4, as well 

as to compare with other similar metalloamphiphiles the following conclusions can be 

drawn: in Langmuir films of 1, the average molecular area is approximately half of that 

needed for 2–4. Nonetheless the areas observed for 2–4 are comparable to other tert-

butyl-substituted phenolate-containing amphiphiles. The nature of the core, reflected by 

its flexibility and coordination number seems to foster distinctive collapse mechanisms. 

Flexible penta- and tetracoordinate cores show a tendency to support constant-pressure 

collapse mechanisms. This behavior was also observed for structurally related cobalt 

amphiphiles, but in that case, the coordination modes were kept constant while the ligand 

flexibility was variable. The results reported here suggest that (i) control of the 

surfactant-to-metal ratio, (ii) selection of the coordination modes and structural properties 

of the material, and (iii) understanding of the protonation preferences of the ligands can 

be achieved by careful choice of the metal ion. Awareness of this information will allow 

to push current limits in reproducibility of thin films of metallosurfactants and is 

expected to pave the way toward the development of metal-containing responsive films. 

3.10. Experimental Section 

Methods and materials used in this chapter are listed in Section 2.1 of Chapter 2. 
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3.10.1. X–ray Structural Determinations. Diffraction data were measured using 

a Bruker P4/CCD or a Bruker X8 APEX-II kappa geometry diffractometer with Mo 

radiation and a graphite monochromator at 100 or 213 K. Frames were collected for 10 s 

and 0.2 or 0.3° between each frame. The frame data was indexed and integrated with the 

manufacturer's software.46 SHELX-97 was used for refinement.47 The collected crystal 

data for the five structures is shown in Table 3.3. 
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Table 3.3. Crystal data. 

 5 6 7 8’ 9 
Formula 
M 
Space group 
a [Å] 
b [Å] 
c [Å] 
α [°] 
β [°] 
γ [°] 
V [Å3] 
Z 
T [K] 
λ [Å] 
Dcalcd. [g cm–3] 
μ [mm–1] 
R(F) (%)[a] 
Rw(F) (%) 

C24H34NiN2O4 
473.24 
P21/c 
14.8325(6) 
7.0996(3) 
22.2614(9) 
 
94.382(2) 
 
2337.38(17) 
4 
100(2) 
0.71073 
1.345 
0.862 
3.43 
8.87 

C27H32NiN4O4 
535.28 
P1 
9.4001(6) 
11.7678(8) 
11.8448(8) 
100.501(1) 
90.400(1) 
101.558(2) 
1260.9(2) 
2 
213(2) 
0.71073 
1.410 
0.810 
3.87 
10.09 
 

C44H66NiN4O4 
773.72 
P21/c 
13.864(3) 
12.596(3) 
12.297(3) 
 
105.450(4) 
 
2069.8(7) 
2 
213(2) 
0.71073 
1.241 
0.515 
3.59 
7.61 

C67H83BCuN4O3 
1066.72 
P21/c 
10.7795(5) 
27.7798(10) 
20.1353(9) 
 
97.053(2) 
 
5983.9(4) 
4 
100(2) 
0.71073 
1.184 
0.413 
4.70 
10.38 

C42H59ClZnN4O6 
816.75 
P1 
11.439(3) 
13.745(5) 
15.891(5) 
96.456(8) 
110.106(5) 
108.547(4) 
2154.3(11) 
2 
213(2) 
0.71073 
1.259 
0.681 
7.47 
19.88 

[a] R(F) = ∑||Fo| – |Fc|| / ∑|Fo| for I > 2σ(I); Rw(F) = [∑w(Fo
2 – Fc

2)2/∑w(Fo
2)2]1/2 for I > 2σ(I). 
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[Ni(C23H30N2O3)]·CH3OH (5): Crystallized as red-amber rods, and a sample 

approximately 0.26 × 0.20 × 0.16 mm3 was used for data collection. 6513 frames were 

collected, yielding 101662 reflections, of which 8947 were independent. Hydrogen 

positions were placed in calculated or observed positions. The asymmetric unit consists 

of one neutral complex, with one equivalent of methanol solvate. 

[Ni(C26H26N4O2)]·(H2O)·(CH3OH) (6) crystallized as pale violet rods. A sample 

0.28 × 0.12 × 0.15 mm3 was used for data collection. 1850 frames were collected, 

yielding 6605 reflections, of which 5292 were independent. Hydrogen positions were 

observed or calculated. The asymmetric unit contains two half coordination molecules, 

each with Ni occupying a crystallographic inversion center, and one equivalent each of 

solvents water and methanol. 

[Ni(C42H58N4O2)]·2CH3OH (7) crystallized as pale yellow-green rods and plates. 

A sample 0.24 × 0.18 × 0.12 mm3 was used for data collection. 1850 frames were 

collected, yielding 53411 reflections, of which 7392 were independent. Hydrogen 

positions were observed and refined. The dataset exhibited a rotated 180 degree twin 

about the (100) reciprocal axis, and corrections were made by use of CELL-NOW, 

SAINT-7, and TWINABS.46,47 The twin component refined to 41 % of the total 

diffraction. Within the coordination complex, Ni occupies a crystallographic inversion 

center. The asymmetric unit contains one half complex and one molecule of methanol 

solvate. [Cu(C42H59N4O2)]·B(C6H5)4·CH3OH (8′) crystallized as square, purple plates. 

The sample mounted measured 0.24 × 0.22 × 0.03 mm3. 1397 frames were collected, 

yielding 51713 reflections, of which 14731 were unique. Hydrogen atoms were placed in 

observed or calculated positions. The asymmetric unit contains one cation, a 
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tetraphenylborate anion and one equivalent of methanol solvent. [Zn(C42H59N4O2)](ClO4) 

(9) presents as yellow plates. The sample used was 0.4 × 0.2 × 0.05 mm3. 1850 frames 

yielded 11230 reflections, of which 8803 were unique. Hydrogen atoms were placed in 

observed or calculated positions. Partially occupied positions were assigned for disorder 

in the tert-butyl groups C15–17 and C36–38. In addition, C36–38 and C36′-38′ were kept 

isotropic during refinement. Typical large thermal parameters were displayed by the 

perchlorato anion. 

3.10.2. Syntheses. Preparation of the Ligands HLA, HLtBu2A, HLtBu2I, and 

HLtBu2ODA. The ligands were synthesized according to the literature.17,20,21 Basic 

procedures are explained for the syntheses of the nickel, copper, and zinc complexes. 

3.10.3. Preparation of the Metallosurfactant [NiII(LtBuODA)(OAc)] (1). A 10 

mL MeOH solution of Ni(OAc)2·4H2O (0.25 g, 1.0 mmol) was added dropwise to a 30 

mL MeOH solution of HLtBuODA (0.58 g, 1.0 mmol). The solution was stirred and gently 

refluxed for 2 h, and then filtered to eliminate unreacted solids. Slow solvent evaporation 

after concentration to one-third of its original volume yielded a waxy, dark green film 

layer. Yield 0.50 g, 72 % for [C41H68N2O3Ni1] (1214.6). IR data (KBr): ṽ = 2933–2857 

(alkyl chain and tert-butyl C–H stretches), 1609 (C=N from pyridine), 1574 (antisym. 

acetate stretch), 1480 (C–O from phenyl) cm–1. MS data (ESI+ in MeOH): m/z = 695.4 

[Ni(LtBuODA)(OAc) + H]+.  

3.10.4. Preparation of the Metallosurfactants [NiII(LtBuODA)2] (2), 

[CuII(HLtBuODA)(LtBuODA)]ClO4 (3), and [ZnII(HLtBuODA)2](ClO4)2 (4). CAUTION! 

Although no difficulties were experienced, species 3–4 and 8–9 were isolated as their 

perchlorate salts, and therefore they should be handled as potentially explosive. A 10 mL 
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MeOH solution containing the salts Ni(ClO4)2·6H2O (0.18 g, 0.5 mmol), 

Cu(ClO4)2·6H2O (0.185 g, 0.5 mmol), or Zn(ClO4)2·6H2O (0.186 g, 0.5 mmol) was 

added dropwise to a 30 mL MeOH solution containing HLtBuODA (0.58 g, 1.0 mmol) and 

Et3N (0.14 mL, 1.0 mmol). In each case the resulting solutions were stirred under mild 

reflux for 1–2 h and then filtered while warm. The solvent was removed by rotary 

evaporation and the crude products were dissolved in 50 mL dichloromethane and 

washed with 4 × 50 mL of saturated brine solution in a separation funnel. The 

dichloromethane phase was then dried with Na2SO4 and concentrated to one third of its 

origonal volume. Slow solvent evaporation yielded a brown thick oil for 2, a brownish 

green waxy solid for 3 and an off-white solid for 4. 

2: Yield 0.42 g, 70 % for [C78H130N4O2Ni1] (1214.6). IR data (KBr): ṽ = 2958–

2854 (alkyl chain and tert-butyl C–H stretches), 1610 (C=N from pyridine), 1467 (C–O 

from phenyl) cm–1. MS data (ESI+ in MeOH): m/z = 1214 [Ni(LtBuODA)2 + H]+. The 

consistency of the material precludes elemental analysis. 

3: Yield 0.46 g, 68 %. C79H135ClCuN4O7 (1351.9): calcd. C 70.18, H 10.02, N 

4.14; found C 69.66, H 9.84, N 3.97. IR data (KBr): ṽ = 2922–2856 (alkyl chain and tert-

butyl C–H stretches), 1611 (C=N from pyridine), 1467 (C–O from phenyl), 1104 (Cl–O 

from ClO4
–) cm–1. MS data (ESI+ in MeOH): m/z = 1219.0 [Cu(HLtBuODA)(LtBuODA)]+. 

4: Yield 0.50 g, 70 %. C78H132Cl2N4O10Zn (1422.2): calcd. C 65.87, H 9.36, N 

3.94; found C 66.12, H 9.34, N 4.00. IR data (KBr): ṽ = 2923–2851 (alkyl chain and tert-

butyl C–H stretches), 1608 (C=N from pyridine), 1472 (C–O from phenyl), 1116 (Cl–O 

from ClO4
–) cm–1. MS data (ESI+ in MeOH): m/z = 1220.0 [Zn(HLtBuODA)(LtBuODA)]+ and 

641.5 [(m/2) + CH3OH]. 
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3.10.5. Preparation of the Archetype [NiII(LtBuI)(OAc)]·CH3OH (5). The 

synthesis of this complex similarly follows that of 1. The crude red powder product 

obtained after roto-evaporation was recrystallized using a 1:1 dichloromethane/methanol 

solvent combination to give needle-like crystals. Yield 0.65 g, 77 %. C24H34N2NiO4 

(473.2): calcd. C 60.81, H 7.24, N 5.92; found C 59.92, H 7.26, N 6.18. IR data (KBr): ṽ 

= 1600 (C=N from pyridine), 1570 (antisym. acetate stretch) cm–1. 1487 (C–O from 

phenyl), 2957–2869 (C–H). MS data (ESI+ in MeOH): m/z = 413.4 [Ni(LtBuI) + 

CH3OH]+. 

3.10.6. Preparation of the Archetypes [NiII(LA)2]·H2O·CH3OH (6), 

[NiII(LtBuA)2]·2CH3OH (7), [CuII(HLtBuA)(LtBuA)]ClO4 (8), [ZnII(HLtBuA)(LtBuA)]ClO4 

(9). A general synthetic approach was followed for the archetypical complexes. A 10 mL 

solution of Ni(ClO4)2·6H2O (0.366 g, 1.0 mmol) for 6 and 7, Cu(ClO4)2·6H2O (0.370 g, 1 

mmol) for 8, or Zn(ClO4)2·6H2O (0.372 g, 1 mmol) for 9 was added dropwise to a 30 mL 

MeOH solution containing 2.0 mmol of the appropriate ligand (HLA for 6 and HLtBuODA 

for 7–9) and 2 equiv. of Et3N (0.28 mL, 2.0 mmol). In each reaction, the resulting 

solution was stirred and warmed gently for 1 h. The metal complexes were recovered 

either by precipitation or by slow evaporation and were collected by filtration and washed 

with diethyl ether. Recrystallization in MeOH afforded suitable crystals for X–ray 

analysis for 6, 7, 8, and 9 after slow solvent evaporation. 

6: Yield 0.53 g, 79 %. C27H32N4NiO4 (535.3): calcd. C 60.65, H 6.03, N 10.48; 

found C 60.23, H 6.17, N 10.21. IR data (KBr): ṽ = 3291 (N–H), 2924 (C–H stretches), 

1606, 1593 (C=N from pyridine), 1486 (C–O from phenyl) cm–1. MS data (ESI+ in 

MeOH): m/z = 484.1 [Ni(LA)2 + H]+. 
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7: Yield 0.59 g, 76 %. C44H66N4NiO4 (773.7): calcd. C 68.35, H 8.61, N 7.25; 

found C 68.23, H 8.74, N 7.20. IR data (KBr): ṽ = 3322 (N–H), 2950 (C–H), 1607 (C=N 

from pyridine), 1469 (C–O from phenyl) cm–1. MS data (ESI+ in MeOH): m/z = 709.3 

[Ni(LtBuA)2 + H]+. 

8: Yield 0.68 g, 82 %. C42H61ClCuN4O7 (832.9): calcd. C 60.56, H 7.38, N 6.73; 

found C 60.05, H 7.36, N 6.81. IR data (KBr): ṽ = 3439 (OH), 3259 (N–H), 2954 (C–H), 

1603 (C=N from pyridine), 1443 (C–O from phenyl), 1120 (Cl–O from ClO4
–) cm–1. MS 

data (ESI+ in MeOH): m/z = 714.4 [Cu(HLtBuA)(LtBuA)]+. Note: X–ray quality crystals 

were generated through counterion exchange using a 3-fold excess of tetraphenylboron 

sodium salt in 50 mL methanol. 

9: Yield 0.60 g, 73 %. C42H59ClN4O6Zn (816.8): calcd. C 61.76, H 7.28, N 6.86; 

found C 61.84, H 7.32, N 6.90. IR data (KBr): ṽ = 3290 (N–H), 2957–2869 (C–H), 1608 

(C=N from pyridine), 1474 (C–O from phenyl), 1097 (Cl–O from ClO4
–) cm–1. MS data 

(ESI+ in MeOH): m/z = 715.2 [ZnII(HLtBuA)(LtBuA)]+. 
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4.1. Introduction 

 The combination of amphiphilic properties with controllable and tunable behavior 

of transition metal complexes leads to metal-containing surfactants that exhibit interfacial 

organization, along with variable geometric, charge, redox, optical, and magnetic 

properties.1 Considerable progress has been made toward the understanding of this metal 

ion/amphiphile cooperativity in supramolecular assemblies.2 Potential high-end uses of 

metallosurfactants include films for optoelectronics3 and logic and memory operations4 

and micellar luminescence and electron transfer.5 Our group is developing precursor 

metallosurfactants, aiming at the inclusion of ligand- and metal-centered redox activity 

while preserving the ability to organize into well-ordered films.6 The current approach 

involves incorporation of selected metal ions into a phenolate-based headgroup of a 

designer amphiphile. The phenolate can then be oxidized into a phenoxyl radical. 

However, because the stabilization of radicals requires the incorporation of tert-butyl 
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groups into the headgroup, it has been observed that improved redox properties lead to 

decreased amphiphilic character and vice versa. Therefore, the development of new 

topologies that can accommodate both properties becomes highly relevant. Recently, we 

reported on an [FeIIIL1] species ((L1)3− is a phenylene−diamine/triphenolate ligand) in 

which five-coordinate iron(III) centers seem to enhance the formation and reversibility of 

three consecutive phenolate/phenoxyl processes on the cyclic voltammetric time scale.7 

The related species [FeIIIL2], where (L2)3− describes a similar 

phenanthrolinediamine/trisphenolate ligand, served as a module for 

[FeIII(L2)CuII(Cl)2(MeOH)]. The redox responses in this bimetallic species are based on 

controlled oxidations and reductions of its fundamental components, i.e., the metal 

centers and the electroactive arms of the ligand.8 Specific potentials trigger definite spin 

ground-state changes, as observed by EPR spectroscopy. 

In this chapter, we describe the synthesis and characterization of the tetrametallic 

[FeII(FeIIIL2)3](PF6)2 (Figure 4.1), along with studies on its electrochemical and 

surfactant properties. 
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Figure 4.1. Modular discoid species [FeII(FeIIIL2)3]2+. 

4.2. Results and Discussion 

This discoid molecule (oblate spheroid with x = y > z) is a first example that 

reconciles the use of tert-butyl groups to promote redox activity and surfactancy by 

enhancement of the species hydrophobic character. Thus, it supports the development of 

a modular approach to discoid multimetallic film precursors. Treatment of [FeIIIL2] with 

anhydrous FeCl2 in a 3:1 ratio in methanol and under argon yielded the tetrametallic 

species [FeII(FeIIIL2)3](PF6)2 as a homogeneous microcrystalline solid. In spite of the 

apparent simplicity of the preparation, several attempts under aerobic conditions led to 

the formation of undesirable side products. This compound, as presently synthesized, was 

characterized by means of exact ESI mass spectrometry and elemental analysis.9 Further 

characterization was obtained by comparative infrared, UV−visible, and XANES/EXAFS 



www.manaraa.com

72 
 

spectroscopies and electrochemical data between [FeII(FeIIIL2)3](PF6)2, the module 

[FeIIIL2], and the compound [FeII(phen)3](PF6)2 (phen =1,10-phenanthroline). The exact 

ESI-MS for the tetrametallic species (2802.3976 Da) in methanol exhibits peaks at m/z = 

1401.69970 related to the bivalent cation [FeII(FeIIIL2)3]+2 and 916.49504 associated with 

the module [(FeIIIL2)3 + H+]+. Comparison of the features present in the UV−visible 

spectra of [FeII(FeIIIL2)3](PF6)2, [FeIIIL2], and [FeII(phen)3](PF6)2 in CH2Cl2 also permits 

one to ascertain the nature of the multimetallic species. The module [FeIIIL2] shows the 

expected intraligand π→π* and N→Fe charge transfer bands at 281 and 333 nm (115 900 

and 69 000 L mol−1cm−1), respectively. The phenolate-to-metal charge transfer bands10 

(pπ→dσ* and pπ→dπ*) appear at 411 and 463 nm (both at 27 500 L mol−1cm−1), thus 

unusually close to each other. This proximity is attributed to the five-coordination of the 

metal. The [FeII(FeIIIL2)3](PF6)2 species presents the analogous processes at 279 (249

700), 336 (96 000), and 486 nm (50300 L mol−1cm−1), along with a new band at 525 nm 

(51 700 L mol−1cm−1). This new process is comparable to the metal-to-phenanthroline 

charge transfer present in [FeII(phen)3](PF6)2 at 511 nm (9390 L mol−1cm−1), thus 

indicating the presence of all expected chromophores.11 The IR spectrum of 

[FeII(FeIIIL2)3](PF6)2 presents peaks at 2870−2960 and 1605 cm−1 associated, 

respectively, with the tert-butyl and C═N groups in the module [FeIIIL2]. Peaks 

associated with the counterion PF6
− appear at 840 cm−1. An equally prominent peak 

related to the out-of-plane deformation of the phenanthroline rings and enhanced through 

coordination is observed at 558 cm−1. The XANES/EXAFS spectra of 

[FeII(FeIIIL2)3](PF6)2 and the module [FeIIIL2] are compared in Figure 4.2. 
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Figure 4.2. XANES region of the Fe K-edge XAS for [FeII(FeIIIL2)3](PF6)2 (red) 
and [FeIIIL2] (blue). Inset: EXAFS region for [FeII(FeIIIL2)3](PF6)2. Data (red) and 
simulation (blue). Shell 1 (Fe−O): n = 2, r = 1.839(6) Å, σ2 = 0.0048(13) Å2. 
Shell 2 (Fe−N): n = 3, r = 1.960(3) Å, σ2 = 0.0010(5) Å2. Shell 3 (Fe−N): n = 1, r 
= 2.104(13) Å, σ2 = 0.0030(2) Å2. Shell 4 (Fe−C): n = 4, r = 2.919(6) Å, σ2 = 
0.0053(8) Å2. E° = 7128.7 eV. ε2 = 0.63. 
 
The edge position of [FeII(FeIIIL2)3](PF6)2 occurs at a slightly lower energy than 

that of [FeIIIL2] (7121.8(3) vs 7122.2(2) eV). A reduction from Fe(III) to Fe(II) should 

result in a lowering of the edge energy by ~2−3 eV. This small shift in edge energy is, 

therefore, consistent with the presence of both trivalent and bivalent oxidation states, 

where the Fe(III) state is predominant. A pre-edge peak in the XANES of 

[FeII(FeIIIL2)3](PF6)2 occurs at 7113.0(1) eV, which corresponds to the parity-forbidden 

Fe(1s → 3d) transitions and has an area of 0.16(1) eV relative to the edge. These 

transitions gain intensity in noncentrosymmetric coordination environments through a 

dipole mechanism and are thus more intense in five- vs six-coordinate environments.12 
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The Fe(1s → 3d) transition of [FeIIIL2] at 7113.2(1) eV has an area of 0.21(1) eV relative 

to the edge. Therefore, the average iron coordination environment is slightly more 

symmetric in [FeII(FeIIIL2)3](PF6)2 than in [FeIIIL2], suggesting that the multimetallic 

species contains both five- and six-coordinate iron centers. The EXAFS region of 

[FeII(FeIIIL2)3](PF6)2 was best modeled with iron surrounded by nitrogen and oxygen 

donors. Three shells are resolvable: one shell containing two short Fe−O scatterers at 

1.84 Å, one shell containing three Fe−N or Fe−O scatterers at 1.96 Å, and one shell 

containing a single long Fe−N scatterer at 2.10 Å. This is consistent with the average iron 

environment predicted for [FeII(FeIIIL2)3](PF6)2. 

In spite of several attempts, the determination of the molecular structure for 

[FeII(FeIIIL2)3](PF6)2 via X–ray diffraction was not possible. The structure of the module 

[FeIIIL2] was published recently,8 but attempts to use it as a starting point for calculations 

has proven to be nontrivial due to the large number of unpaired electrons at the iron 

centers. 

Therefore, we obtained a crystal structure for the analogous compound [GaIIIL2].13 

The ORTEP representation is shown in Figure 4.3(a) with selected bond lengths. The 

similar nature of the gallium and iron structures is inferred by their neutral character, the 

identity of the ligand showing a monosubstituted amine N4 with a single phenolate 

appended, whereas the vicinal amine N1 exhibits two of these groups. Furthermore, both 

species display a short bond length characteristic of a C═N imine group and a metal 

center that is five-coordinated in a N2O3 environment. On the basis of these similarities, a 

model [GaIII(GaIIIL2)3]3+ was built and its geometry minimized using the molecular 

mechanics UFF force field14 available in the Gaussian 03 software package.15 This model 
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describes one possible isomer, shown in Figure 4.3(b), in which one module displays the 

singly appended phenolate pointing upward while the two other modules point 

downward. Although several isomers are possible,16 the one displayed is more stable by 

ca. 20 kcal/mol when compared to three other calculated geometries.  
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Figure 4.3. (a) ORTEP for [GaL2], Ga−O(3) = 1.828(3), Ga−O(1) = 828(3), Ga−O(2) = 1.899(3), Ga−N(4) = 1.975(4), 
Ga−N(1) = 2.266(4) Å. (b) MM-UFF model for [Ga(GaL2)3]2+. 
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In all cases, the models provide evidence for the discoid nature of the multimetallic 

species. On the basis of the similar ionic radii of gallium(III) (0.76 Å) and ironls(II) (0.75 

Å), as well as in the already established similarities between the complexes of both 

metals coordinated to these pentadentate ligands, an estimated geometric radius from the 

central metal to the periphery is calculated to lie between 9.0 and 11.0 Å. Examination of 

the positions occupied by the tert-butyl groups attached to each phenolate reveals that the 

majority of these groups point outward conferring an enhanced hydrophobic cushioning 

which prevents the charged and hydrophilic discoid core from sinking into water and 

leads to a differentiated topology. The redox responsivity of [FeII(FeIIIL2)3](PF6)2 was 

assessed by cyclic voltammetry (CV, vs Fc+/Fc). Comparison with the [FeIIIL2] module 

and with [FeII(phen)3](PF6)2 allowed for attributions to the origin of the observed 

processes (Figure 4.4). 

 

Figure 4.4. CVs of [FeII(phen)3](PF6)2 (top), [FeIIIL2] (middle), and 
[FeII(FeIIIL2)3](PF6)2 (bottom) in dichloromethane, TBAPF6 vs Fc+/Fc. 
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The CVs for the multimetallic species and the module display a cathodic wave for 

the process ascribed to the FeIII/FeII couple. This process is anodically shifted in the 

tetrametallic species to E1/2 = −1.24 V and is less reversible (ΔEp = 0.33 V; |Ipc/Ipa| = 1.8) 

than that of the module at E1/2 = −1.37 (ΔEp = 0.25 V; |Ipc/Ipa| = 1.4). The 

phenolate/phenoxyl oxidative process occurs for both [FeII(FeIIIL2)3](PF6)2 and [FeIIIL2] 

at ca. E1/2 = 0.64 V. Interestingly, an enhanced reversibility is observed in the 

multimetallic complex, as indicated by |Ipc/Ipa| = 0.8, compared to a value of 0.2 observed 

for the module. This profile might be associated with—or at least influenced by—the 

Fe(II)−phenanthroline core, because the metal-centered process for the unsubstituted 

[FeII(phen)3](PF6)2 appears at E1/2 = 0.77 V (ΔEp = 0.08 V; |Ipc/Ipa| = 1.1). To evaluate the 

efficacy of the discoid design to act in hydrophobic precursors for film formation, 

compression isotherms plotted as surface pressure (mN/m) vs average molecular area 

(Å2) were recorded at the air/water interface in a Langmuir−Blodgett trough at 23 °C, as 

shown in Figure 4.5(a). The quality of the films was monitored during compression 

using Brewster angle microscopy (BAM), Figure 4.5(b). The molecules of 

[FeII(FeIIIL2)3](PF6)2 start to interact with each other at the subphase at ca. 320 

Å2/molecule. The BAM images display a highly homogeneous film from 10 to ca. 40 

mN/m, when a decrease in the slope of the isotherm coincides with the formation of 

linearly oriented Newton rings,17 suggestive of a formal constant pressure collapse 

mechanism.18 The average limiting area per molecule is 280 Å2/molecule, thus with a 

radius of ca. 9.5 Å, in excellent agreement with the estimated radius of the 

[GaIII(GaIIIL2)3]3+ model. 
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Methods and materials used in this chapter are listed in Section 2.1 of Chapter 2. 

All synthetic details, X–ray structural determinations, molecular mechanics calculations, 

ESI-MS exact mass, infrared, UV–visible spectra, and electrochemical data can be found 

in Appendix B.  

 

Figure 4.5. [FeII(FeIIIL2)3](PF6)2 at the air/water interface: (a) isothermal 
compression. Selected BAM images at (b) 10−40 mN/m and (c) collapse. 

 

4.3. Conclusions 

In summary, we have reported on the tetrametallic complex [FeII(FeIIIL2)3](PF6)2 

of discoid topology. The presence of metallic centers and ligand moieties such as 

phenolates and coordinated phenanthrolines extends the redox capabilities of this species. 

Along with its hydrophobic character, this species is a strong candidate for the formation 

of redox-responsive monolayer films. To the best of our knowledge, this is the first 

example of a discoid tetrametallic species in which the presence of tert-butyl groups 

concomitantly enforces redox activity and surfactancy. This result points to a general 

strategy in which a modular approach can be used to develop redox-active homo- and 
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heterometallic film precursors of discoid topology. The synthetic approach and film 

transfer onto solid substrates are under investigation in our laboratories. 
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5.1. Introduction 

Metallosurfactants comprise a new class of coordination compounds that combine 

metal properties such as geometric control, redox, optical, and magnetic behavior1,2 with 

amphiphilicity.3 These materials are increasingly relevant for high-end applications 

involving optoelectronics,4 logic and memory operations,5,6 and micellar luminescence 

and electron transfer.7,8 Therefore, the integration of amphiphilic properties to antennae 

constituents is a relevant step toward the development of metallosurfactant precursors for 

photoresponsive modular films for artificial photosynthesis. In this regard, ruthenium 

bipyridyl complexes such as the [RuII(bpy)2]2+ have received considerable attention 

because of their superior photosensitizing properties and consequent relevance toward 

water oxidation. 
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In recent years, our group has spearheaded a comprehensive effort toward redox 

active precursors for Langmuir−Blodgett films. We have established a wide range of 

differentiated scaffold designs,9,10 studied redox and collapse mechanisms,11 and 

demonstrated how coordination and protonation preferences dictate amphiphilic 

behavior.12 

We have envisioned the integration of the photoresponsive [RuII(bpy)2]2+ to 

bidentate amphiphilic ligands containing aminomethyl-pyridine and -phenol headgroups, 

and in this article, we evaluate a new family of asymmetric [LRu(bpy)2]+/2+ 

metalloamphiphiles, namely, [(LPyI)RuII(bpy)2](PF6)2 (1), [(LPyA)RuII(bpy)2](PF6)2 (2), 

[(LPhBuI)RuII(bpy)2](PF6) (3), and [(LPhClI)RuII(bpy)2](PF6) (4) (Scheme 5.1), where Py = 

pyridine and Ph = phenolate, I = imine and A = amine, and Bu or Cl indicates the ortho- 

and para-substituted tert-butyl or chloro groups in the phenolate complexes.  

 
 

Scheme 5.1. Series of Pyridine- and Phenolate-Based Ruthenium(II)-Containing 
Amphiphiles 1–4 
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We interrogate the electrochemical properties of these systems to evaluate the nature of 

the redox processes, the optical and electronic properties to evaluate the photostability 

and excitability (emission) of these species, and the amphiphilic properties to evaluate the 

potential for formation of ordered LB films. In particular, we evaluate (a) how the 

presence of C18 alkyl groups allow for formation of high-quality Langmuir films at the 

air/water interface, (b) the difference in related species (imino versus amino) for LPy and 

(tert-butyl versus chloro) for LPh, and (c) whether density functional theory (DFT) 

calculations can model and account for the observed redox responses. These concerns are 

addressed using a host of synthetic, spectrometric, spectroscopic, and computational- and 

surface-dedicated methods, and we attempt to correlate these properties to assess the 

viability of these species as precursors for photoresponsive LB films. 

5.2. Results and Discussion 

 5.2.1. Syntheses and Characterizations. Design Rationale. The rationale behind 

our design strategy involves the combination of distinct donor sets built into 

photoresponsive [RuII(bpy)2]2+ moieties by means of bidentate chelating ligands 

containing hydrophobic alkyl tails. This design is based on our previously described 

pyridyl-13–15 and phenol-based16 ligands coordinated to the Cu(II) dication and bears 

resemblance to some of the work by Yam et al.4,17,18 and Keyes et al.19,20 We aim at 

extending efforts toward the relatively more inert bivalent Ru2+ ion, targeting the 

electrochemical redox behavior of species 1−4, while preserving their amphiphilic and 

photoresponsive character. Along with the ligands LPyI and LPyA present in 1 and 2, we 

recognized phenolato-based complexes as less prevalent. This prompted us to merge 
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well-established amphiphilic ligands such as HLPhBuA and HLPhClA with [Ru(bpy)2]2+ to 

yield the imines 3 and 4 with extended spectroscopic and electrochemical features.19 

 5.2.2. Ligands. Condensation of 1-octadecylamine with 2-

pyridinecarboxyaldehyde in methanol gave the imine surfactant ligand precursor LPyI 

which was subsequently reduced in the presence of sodium borohydride to yield the 

amine ligand precursor LPyA.15 The phenol-containing surfactant ligands HLPhBuA and 

HLPhClA were generated from 1-octadecylamine in reaction with 3,5-di-tert-butyl-2-

hydroxybenzaldehyde or 3,5-dichloro-2-hydroxybenzaldehyde, respectively, followed by 

reduction to generate the amine precursors.16 These ligands were characterized by means 

of 1H−NMR and infrared (IR) spectroscopies and electrospray ionization (ESI-MS) mass 

spectrometry with generally 80−85% overall yields. 

 5.2.3. Complexes. The Ru(II) pyridine complexes 1−2 were obtained by adapting 

general synthetic approaches for analogous compounds by treatment of equimolar ratios 

of cis-[Ru(bpy)2Cl2]·2H2O with the ligands LPyI and LPyA in absolute ethanol.4,17 The 

Ru(II) phenol-containing metallosurfactants 3−4 were achieved upon complexation of the 

ligands HLPhBuA and HLPhClA with Ru(bpy)2(CF3SO3)2 in isopropanol or acetone, 

respectively, using triethylamine as a base for phenol deprotonation. Because previous 

attempts using cis-[Ru(bpy)2Cl2]·2H2O led to undesirable side products, 

Ru(bpy)2(CF3SO3)2 was chosen for complexation with the phenolate-containing ligands. 

This route took advantage of the excellent leaving group properties of the triflate ion. It 

should be pointed out that compounds 3 and 4 encompass imine ligands formed from in 

situ oxidation of the parent amine ligands. Such conversion has been reported in similar 

systems.21 
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All complexes were precipitated with ammonium hexafluorophosphate and 

purified by column chromatography to yield microcrystalline powders which were 

characterized by IR, elemental analyses, ESI+ mass spectrometry, and electrochemical 

methods. Elemental analyses for 1−4 were in excellent agreement with theoretical 

percentages. The ESI+ mass analyses of 1 and 2 in methanol indicate the presence of 

signature peak clusters with general formulas [(LPyX)RuII(bpy)2]2+ and 

[(LPyX)RuII(bpy)2PF6]+. The phenolate species 3 and 4, being composed of a charged 

ligand, showed single mass patterns corresponding to the monovalent 

[(LPhBuI)RuII(bpy)2]+ ion species. A differential isotopic distribution was observed for 4 

due to the contributing chloride isotopes. The pertinent m/z peak clusters are shown in 

Appendix C, Figures C.5.1−C.5.4 and were simulated in good agreement with their 

patterns, positions, and isotopic distributions.  

Complex formation was further observed by the presence of vibrational modes 

attributed to the ligand, particularly the characteristic strong C−H stretching contribution 

of the alkyl chain appearing at 2851−2924 cm−1, and the strong stretch at 840−846 cm−1 

(νP−F) due to the totally symmetric vibration frequency of hexafluorophosphate 

counterion. 

5.2.4. Electronic Absorption Spectroscopy. Electronic absorption spectral data 

for complexes 1−4 were measured in 10−3 to 10−5 M acetonitrile solutions. Table 5.1 lists 

relevant absorption maxima and molar extinction coefficients, and spectra are displayed 

in Figure 5.1. Intense intraligand σ → π* and π → π* processes dominate the ultraviolet 

region of the spectrum for 1−4 with two maxima centered about 245 and 290 nm. 

Appreciably larger absorptivities have been observed for the phenolato-based 3 and 4. 
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Table 5.1. Photophysical Parameters for Complexes 1−4 

complex absorption λabs (nm)/ε (L mol−1 cm−1)a emission λem/nm; cm−1b,c lifetime τo (ns)c 
1 
 
 
2 
 
 
3 
 
 
4 

239 (17,330); 243 (17,530); 255 (16,030); 287 (44,120);  
345 sh (4,460); 432 sh (8,940); 462 (11,080) 
 
245 (18,120); 291 (43,850); 342 (7,450); 424 sh (4,540);  
472 (7,070) 
 
248 (50,260); 294 (59,200); 377 (13,870); 476 sh (7,950);  
521 (8,550) 
 
247 (37,910); 295 (60,860); 363 (10,570); 519 (8,380) 
 

715; 13,986 
 
 
641; 15,601 

77 
 
 
193 

a Spectra measured in 1.0 × 10−5 M acetonitrile solution. b Emission maxima are corrected values. c Excitation wavelength at 460 nm for 1 and 470 nm for 2. 
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Figure 5.1. UV−visible spectra of pyridyl complexes 1 and 2 (top) and phenolate 
complexes 3 and 4 (bottom) in acetonitrile, 1.0 × 10−5 M. 

 

Additionally, a third less intense intraligand absorption band is positioned near 342 nm 

for the pyridyl-based ligand compounds. A shoulder is seen for 1; the equivalent band for 

compounds 3 and 4 is red-shifted to the vicinity of 370 nm. Previously Meyer et al.22 

have isolated and investigated the related [Ru(bipy)2(AMPy)](ClO4)2, where (AMPy) is 

2-(aminomethyl)-pyridine, analogous to 1−2. A matching absorption profile can be drawn 

between that species and 2, allowing to infer that the alkyl chain plays a negligible 

electronic role to the overall spectroscopic properties of these species. Both the complex 

[Ru(bipy)2(AMPy)](ClO 4)2 and 2 exhibit an ill-defined shoulder at 425 nm, absent in the 

pyridyl-imine 1, where this corresponding shoulder is slightly shifted to 432 nm. On the 

basis of other related compounds,4,17,18,22 we tentatively ascribe this band to a composite 



www.manaraa.com

94 
 

 

of allowed intraligand π → π* and dπ(RuII) → π*(bpy) metal-to-ligand charge transfer 

transitions. The second feature of importance in the visible region is a broad band 

transition at 462 nm for 1. This transition band is attributed to the dπ(RuII) → 

π*(iminomethylpyridine) metal-to-ligand charge transfer transition,4,17,18,22 which in the 

pyridyl-amine 2 is red-shifted to 472 nm with distinctly lower absorptivity. The overall 

smaller ligand-field strengths of the σ-donating phenolato ligands present comparatively 

red-shifted, markedly broad low-energy metal-to-ligand charge-transfer (MLCT) or 

intraligand CT bands for complexes 3 and 4, relative to 1 and 2 containing the π-acceptor 

pyridyl ligands. These charge transfer transitions are observed at 519−521 nm (ε = 

8380−8550 L mol−1 cm−1) for both 3 and 4, thus consistent with the behavior observed 

for other RuN5O chromophores in similar ligand-donor environments.23,24  

 5.2.5. Emission Spectroscopy. Room temperature (RT) excitation of 1 and 2 in 

acetonitrile at λ > 460 nm induces emission at 715 and 641 nm, respectively (Figure 5.2).  

 

Figure 5.2. Emission spectra of pyridyl complexes 1 and 2. 
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The pseudo-Stokes shift for 1 (ca. 7700 cm−1) is about 2100 cm−1 larger than that 

observed for 2 (ca. 5600 cm−1). Species 2 showed a room-temperature lifetime 2.5 times 

longer than that of 1. These observations lead to the inference that the lowest energy 

triplet MLCT states originate from different chromophores, as will be supported by the 

electrochemical data and density functional theory (DFT) calculations. Further studies are 

necessary for a definitive assignment. The phenolate-based 3 and 4 seem non-emissive in 

the UV−visible range accessible to the detector at room-temperature in acetonitrile. The 

[Ru(bpy)2(AMPy)](PF6)2 compound was prepared according to the protocol published by 

Meyer.22 This species is analogous to the above-mentioned pyridyl-amine complex 2 but 

lacks the octadecyl chain. The response for both compounds is identical in position and 

intensity. 

5.2.6. Photolability Studies. Owing to the commonly observed photoactive 

nature of ruthenium-containing complexes, we examined the relative photolability of 

1−3. Samples were prepared in dry acetonitrile or dichloromethane to distinguish 

between the effects of coordinating versus non-coordinating solvents on the apparent 

photolability of the ruthenium complex. Clear photochemical conversion was observed in 

complex 2 by the disappearance of peaks at 342 and 472 nm, along with the appearance 

of a new peak at 427 nm. The observations indicate that 2 was converted into the 

[(MeCN)2RuII(bpy)2]2+ species in acetonitrile (Figure 5.3). 
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Figure 5.3. UV−visible spectra recorded for photodissociation of 2  
in MeCN. 
 

ESI+ mass spectrometry supports these results with the appearance of a new peak 

at m/z = 248.2 associated with the dicationic species [(MeCN)2RuII(bpy)2]2+. Peaks of 

interest for 2 and [(MeCN)2RuII(bpy)2]2+ were monitored at different cone voltages (5, 

20, and 40 V) and times (0, 3, 20, 40 min). At low cone voltages (5 V), the peak at m/z = 

248.2 increased over time to 100% intensity. Other relevant peaks appeared after 20 min 

irradiation at m/z = 641.2 for [(MeCN)2RuII(bpy)2 + PF6]+ and m/z = 361.6 for [LPyA + 

H+], concomitant to a decreased intensity for m/z = 919.7 associated with [2 − PF6]+ and 

m/z = 387 from [2 − (PF6)2]2+. The [2 − (PF6)]+ ion disappears after 40 min of 

photoirradiation. The observed isotopic fingerprint clusters were in good agreement with 

the nature and charge of the ions present. 
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The mass spectroscopic results from the photosubstitution experiments for 1−2 in 

acetonitrile were plotted as percentage intensity counts versus time (minutes). For 2, the 

decrease in percentage abundance of the [(LPyA)RuII(bpy)2 + (PF6)]+ species at a cone 

voltage of 5 V followed concurrent increase in formation for the [(MeCN)2RuII(bpy)2]2+ 

photoproduct (Appendix C, Figure C.5.5). A viable photodissociative mechanism has 

been proposed by Matsuo et al.25 using online electrospray MS, and seems to involve 

formation of monodentate intermediates of 2 before the ligand LPyA is fully exchanged by 

coordinating acetonitrile molecules. 

When the non-coordinating dichloromethane was used, no significant changes in 

the UV−visible and ESI+ features of 2 were observed (Appendix C, Figure C.5.6). 

Furthermore, both 1 and 3 revealed excellent photostability in acetonitrile and 

dichloromethane. The stability of 3 is tentatively associated to the strong σ-donor nature 

of the phenolate moiety.20 

5.2.7. Electrochemistry. The cyclic voltammograms (CVs) of 1−4 demonstrate 

two successive cathodic waves, ranging between E1/2 = −1.78 and −2.27 V, for the one-

electron processes attributed to the classical bipyridine reduction couples (Figure 5.4). 

Complex 1 reveals a third ligand-centered reductive process at E1/2 = −2.22 V versus 

Fc+/Fc. The process observed at E1/2 = −1.63 V versus Fc+/Fc is tentatively ascribed to 

the reduction of the LPyI imine-based ligand, which appears at the least negative potential 

of all complexes. A single quasi-reversible one-electron metal-centered RuII/RuIII couple 

appears at E1/2 = 0.93 V (ΔEp = 0.08 V; |Ipc/Ipa | = 1.31) versus Fc+/Fc. The pyridyl-amine 

based complex 2 displays an irreversible metal-centered oxidative process credited to the 

RuII/RuIII couple, as an anodic wave observed at E1/2 = 0.68 V versus Fc+/Fc, where ΔEp 



www.manaraa.com

98 
 

 

= 0.12 V. Additionally, this complex shows a ligand-based process due to the oxidation 

of the ligand from aminomethylpyridine to its imine counterpart. This oxidative 

dehydrogenation mechanism was investigated by Keene et al.22,26,27 The conversion of an 

amine into an imine is catalyzed by the coordination to the ruthenium ion, and its 

reversibility seems highly dependent on the scan rate. 

 

 

 

 

 

 

 

 

 

 

 

Complexes 3 and 4 present more negative potentials for the reductive bipyridine 

couples, in contrast to the pyridyl-based complexes 1 and 2. The averaged reduction 

potentials are E1/2 = −1.94 and −2.25 V versus Fc+/Fc, and are comparable in reversibility 

to those containing aminomethylpyridine ligands. The metal-based RuII/III oxidation 

couple and the phenolate/phenoxyl radical ligand oxidative processes are associated with 

the anodic waves observed for complexes 3 and 4. These waves have not been assigned 

conclusively and heavy orbital-interaction between redox centers is most likely a major 

 

       Figure 5.4. CVs of 1−4 in acetonitrile, TBAPF6, Potential (mV) versus Fc+/Fc. 
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complicating factor for these oxidative type processes. The chloro-substituted complex 4 

displays narrowly overlapping oxidative processes. This indicates some destabilization 

effects on the phenolate-to-phenoxyl oxidation when compared to the tert-butyl-

substituted complex 3. Table 5.2 summarizes the results with potentials reported versus 

the Fc+/Fc couple. The correlation of the observed spectroscopic and electrochemical data 

to the frontier orbitals was explored by means of DFT calculations to understand the 

origin of these processes. 

Table 5.2. Cyclic Voltammetry Data for 1−4a 

 E1/2 (ΔEp) [V], |Ipc/Ipa|  
complex reductionsb oxidationsc 

1 
2 
3 
4 
 

−1.63 (0.09), |1.57|; −1.94 (0.09), |1.56|; 
−2.22 (0.1) 
−1.78 (0.06), |0.66|; −2.03 (0.06), |0.91| 
−1.95 (0.09), |1.34|; −2.27 (0.08), |2.02| 
−1.93 (0.09), |1.65|; −2.23 (0.09), |1.51| 
 

0.93 (0.08), |1.31| 
0.68 (0.12); 0.93 (0.08) 
−0.01 (0.08); 0.28 (0.10); 0.71 
(0.18), |1.44| 
~ 0.18 (0.20); 0.25ox 

a CVs of 1−4 at 1.0 × 10 −3 mol L−1 in MeCN with 0.1 M TBAPF6 supporting electrolyte using 150 mV s−1 scan rate at RT in an inert 
atmosphere. b Potentials listed as the cathodic peak potential Epc versus Fc+/Fc. c Potentials listed as the anodic peak potential Epa 
versus Fc+/Fc. ox = oxidation only 
 
 

5.2.8. Electronic Structure Calculations. Representative models 1′, 2′, 3′, and 4′ 

composed of shortened propyl chains were designed to offer insight into the electronic 

and structural properties of 1−4 (Appendix C, Figure C.5.7). The models are in good 

agreement with corresponding structural data of pyridyl- and phenol-based [RuII(bpy)2] 

complexes previously reported.24,26,28−30 Similar approaches in our group9,11,12,14,16,31 have 

been instructive to provide information of the binding modes of metal-containing 

amphiphilic compounds. 

 5.2.9. Nature of the HOMOs and LUMOs. Frontier orbitals for 1′−4′ were 

calculated for correlation to and probing of the origin of the observed electrochemical 
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(redox) and spectroscopic (optical) properties.28 Relative Molecular Orbital (MO) 

energies are displayed in Figure 5.5, and Appendix C (Table C.5.1 and Figure C.5.8). 

 

Figure 5.5. Relative molecular orbital energies. 

As ordinarily observed for polypyridyl complexes, the contributions from the first 

three occupied orbitals for the pyridyl-imine based model 1′ can be assigned to the Rudπ 

orbitals. More specifically, the highest occupied molecular orbital (HOMO), HOMO-1, 

and HOMO-2 are comparatively similar in energy with 74−83% localization on the metal 

ion. Although the orientation of HOMO-2 is slightly different, the HOMO, HOMO-1, 

and HOMO-2 orbitals for 2′ are quite consistent to the arrangement observed for 1′. 

Interestingly, the three lowest unoccupied molecular orbitals (LUMOs) for 1′ are 
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distinctly unique among the presented series. These three orbitals display similar energy, 

rather than the typical set of symmetrical and unsymmetrical combinations for 

bipyridines. The LUMO is dominated by 70% localized contribution of the pyridine-

imine ligand, while the LUMO+1 and LUMO+2 are, respectively, the antisymmetric and 

symmetric combinations of the bipyridine orbitals. In contrast, the LUMO and LUMO+1 

for 2′ are ascribed to the conventional antisymmetric and symmetric combinations of the 

bipyridine orbitals. The model complexes containing phenolato-based ligands (3′ and 4′) 

behave in a generally comparable manner to one another. However, these complexes 

consist of different occupied orbital compositions relative to 1′ and 2′. The HOMO for 3′ 

is 63% localized on the phenolate-imine based ligand and 31% contribution is coming 

from a ruthenium-based orbital. The result is a largely mixed metal−ligand orbital. 

Moreover, the HOMO-1 and HOMO-2 are chiefly Rudπ-based orbitals with 76% and 69% 

contributions, respectively, possessing unsuited spatial orientation for overlap with the 

phenolate pπ-type orbital. Percent compositions of representative MOs are shown in 

Figure 5.6 and the Appendix C, Figure C.5.9. 
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Figure 5.6. Orbital composition for 1′ and 3′. 

The HOMO and HOMO-3 appear to be the result of π interactions where the 

HOMO-3 (45: 46% phenolate-to-metal) is the bonding orbital and the HOMO is 

described by an antibonding arrangement (Scheme 5.2). 
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        Scheme 5.2. Ru/Phenolate Orbital Interactions for 3′ and 4′. 

5.2.10. Correlations to Spectroscopic and Electrochemical Data. Considerable 

differences in the behavior of 1−4 have been observed experimentally. Frontier orbital 

arguments invoking 1′−4′ can be helpful to infer which MOs are related to redox and 

spectroscopic processes. This approach should be used with caution, considering that 

orbitals are determined without nuclear relaxation while electrochemistry is an 

equilibrium measurement. Further complexity is brought to this picture when multiple 

redox centers are involved. The electrochemical and the DFT-calculated HOMO−LUMO 

gap are tabulated in Table 5.3 and plotted in the Appendix C, Figure C.5.10. The 

experimental data agrees well with the theoretically calculated trend where 3′ < 4′ < 2′ ≈ 

1′. The tert-butyl-phenolate species presents the lowest HOMO−LUMO gap (ΔEcalc = 2.5 

eV, ΔEexp = 1.94 V), and both of the pyridyl-based complexes demonstrate comparable 

energy values. The differences observed can be directly attributed to the HOMO orbital 

associated with the anodic oxidation potential. Thus, the oxidative processes must be 

described as involving heavily mixed Ru-phenolato processes, rather than as formal 
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RuII/RuIII or phenolate/phenoxyl redox couples. This interpretation is supported by the 

MLCT bands of 3 and 4 between 500 and 550 nm, where a similar trend is observed as a 

consequence of a small HOMO−LUMO energy difference. Cartesian coordinates for the 

optimized structures can be found in Appendix C, Table C.5.2. 

Table 5.3. Experimental and Calculated HOMO−LUMO Gaps 

complex experimental redox gap 
(V)a 

model calculated HOMO−LUMO 
gap (eV)b 

1 
2 
3 
4 
 

2.56 
2.46 
1.94 
2.11 

1′ 
2′ 
3′ 
4′ 
 

3.3 
3.3 
2.5 
2.8 

a Difference between half-wave potentials for oxidation and reduction. b B3LYP/LANL2DZ with IEF-PCM MeCN. 
 

 5.2.11. Amphiphilic Properties. The amphiphilic behavior of the 

metallosurfactants 1−4 was analyzed by means of compression isotherms32 (Figure 5.7) 

and Brewster angle microscopy (BAM).33,34 Langmuir film formation is monitored 

following the spreading of solutions of the amphiphiles, dissolved in an immiscible 

organic solvent, onto the aqueous subphase of a minitrough with moveable barriers. As 

these barriers move closer to each other, compression isotherms plotting surface pressure 

(Π, mN·m−1) versus average molecular area (A, Å2) grant fundamental information 

concerning the two-dimensional molecular organization of the monolayer at the air/water 

interface, collapse pressures (πc), limiting areas per molecule (Alim), and monolayer 

collapse areas (Ac). Simultaneously Brewster angle microscopy evaluates film 

homogeneity, domain and agglomerate formation upon passing vertically polarized light 

through media possessing different refractive indexes. 
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  Figure 5.7. Compression isotherms of the metallosurfactants. 

Given that the pyridyl-containing ruthenium amphiphiles 1 and 2 showed some 

solubility in water, complex dissolution was prevented by using a 0.1 M NaCl aqueous 

subphase with increased ionic strength. The compression isotherms measured for 1 and 2 

indicate the formation of well-defined condensed phase regions and distinct collapse 

pressures; properties characteristic of the formation of stable monolayer films. The 

individual molecules of both pyridyl-containing amphiphiles start interacting at the 

air/water interface at an area of about 235 Å2·molecule−1 to form an expanded phase. No 

phase transitions were observed, and 1 presents a collapse pressure of about 29 mN·m−1, 

while 2 shows a collapse pressure of about 32 mN·m−1. Amphiphiles 1 and 2 both 
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demonstrate a sudden decrease in surface pressures, which is a trait typical of constant-

area collapse mechanisms.35,36 Collapse areas for these species were obtained by 

extrapolating the steepest portion of the isotherm to zero pressure, which have been 

determined to be 125 and 120 Å2·molecule−1 for 1 and 2, respectively. Close structural 

resemblances can be attributed to the similar interactions observed by the molecules of 

both complexes at the air/water interface. 

Isothermal compressions for the phenolato-containing ruthenium amphiphiles 3 

and 4 were recorded in a 0.1 M NaCl aqueous subphase. Although these species are 

insoluble in water, this subphase was selected to keep consistency. Single molecules of 

the tert-butyl-substituted 3 start interacting at the air/water interface at about 170 

Å2·molecule−1, whereas the molecules of the chloro-substituted 4 interact at a lower area 

of about 107 Å2·molecule−1. These species do not show distinct phase transitions and 

display well-defined condensed phase regions until the collapse pressure is reached. 

Similar surface collapse pressures of about 39 mN·m−1 were observed for 3 and 4. 

However, the tert-butyl-substituted 3 shows an isothermal profile akin to a constant-

pressure collapse mechanism, and the chloro-substituted counterpart 4 presents a 

constant-area collapse mechanism. Both mechanisms follow the Ries sequence37,38 of 

folding, bending, and breaking into multilayers. Amphiphile 4 confers a moderately sharp 

area of interaction relative to the other complexes in this series. The limiting areas per 

molecule for 3 and 4 reach about 120 and 100 Å2·molecule−1, respectively. The similar 

limiting areas per molecule for 1−4 are greater than the expected values and can be 

accounted for by the increased ionic strength of the subphase, suggesting some tilting of 

the alkyl-chains.13 
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Representative Brewster angle micrographs have been recorded simultaneously 

along with the isothermal compressions for 1−4 (Figures 5.8 and 5.9). Complexes 1 and 

2 reveal multiple domains before compression and at pressures lower than 4 mN·m−1. 

The pyridyl-imine complex 1 exhibits a smooth and homogeneous film throughout 

compression. Formation of minor domains at about 29 mN·m−1 suggest collapse, directly 

correlating to the isothermal compression data. Likewise, the pyridyl-amine complex 2 

shows a homogeneous monolayer until collapse is reached at about 32 mN·m−1. The 

molecules of the phenolate-containing 3 and 4 form random domains before compression 

and evolve to smooth, non-corrugated films. At a pressure of about 35 mN·m−1 collapse 

is evident via the formation of several spots interpreted as either Newton rings or vesicles 

suggestive of thermodynamic film instability.39 

 

  Figure 5.8. BAM images of complexes 1 and 2. 
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  Figure 5.9. BAM images of complexes 3 and 4. 

5.3. Overview and Conclusions 

 In this chapter, we have described the synthesis and characterization of the new 

family of pyridyl- and phenolato-containing amphiphiles described as 

[(LPyI)RuII(bpy)2](PF6)2 (1), [(LPyA)RuII(bpy)2](PF6)2 (2), [(LPhBuI)RuII(bpy)2](PF6) (3), 

and [(LPhClI)RuII(bpy)2](PF6) (4). The viability of these species as precursors for 

photoresponsive Langmuir−Blodgett films was evaluated by addressing (i) the electronic 

properties to assess the photostability and excitability (emission), (ii) the electrochemical 

properties to evaluate the nature of the redox processes, and (iii) the amphiphilic 

properties to investigate the potential for formation of ordered Langmuir−Blodgett films. 

 (i) Electronic Properties. Absorption spectral data show the visible region 

dominated by dπ(RuII) → π*(bpy) MLCT transitions for 1 and 2, along with dπ(RuII) → 
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π*(iminomethylpyridine) processes for 1. The pyridyl-amine 2 shows a red-shifted band 

at 472 nm. The phenolato complexes 3 and 4 present less intense and red-shifted MLCT 

observed between 519−521 nm. Emission spectral data show that species 1 and 2 emit at 

715 and 641 nm, respectively, with the second species having a lifetime 2.5 times longer 

than the first. The relative photolability of these species was examined. Clear 

photochemical conversion was observed for 2 in acetonitrile, but not in dichloromethane. 

On the basis of ESI+ mass spectrometric methods, we suggested that 2 was converted into 

[(MeCN)2RuII(bpy)2]2+. The imines 1, 3, and 4 do not show evidence of 

photodissociation. 

 (ii) Electrochemical Properties. Species 1−4 showed rich redox chemistry, 

where two successive cathodic waves were attributed to bipyridine reduction. More 

negative potentials for these processes were observed for 3 and 4, whereas an additional 

process was observed for 1 and ascribed to the reduction of the imine-based LPyI ligand. 

Anodic waves were associated to metal oxidation in 1−4 and the formation of phenoxyl 

radicals for 3 and 4. DFT calculations based on models 1′−4′ with shortened propyl 

chains have helped in the interpretation of the experimental electronic and redox behavior 

of 1−4. The calculated HOMO−LUMO energy differences correlate well with the 

observed electrochemical potentials as follows: (a) the energy differences observed for 1 

and 2 when compared to 3 and 4, are directly attributed to the HOMO orbital associated 

with the oxidation processes, (b) the distinctive three low-lying unoccupied LUMO 

orbitals for 1′ seem consistent with the electrochemical and emission spectroscopy 

results, and (c) for 3 and 4, the oxidative processes are based on heavily mixed Ru-

phenolate based MOs that correlate to broad low energy MLCT bands. 
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 (iii) Amphiphilic Properties. Species 1−4 are surface-active and are strong 

candidates for the formation of monolayer films, as characterized by compression 

isotherms and Brewster angle microscopy. The collapse pressures are fairly high at about 

29−32 mN·m−1 for 1 and 2 and about 39 mN·m−1 for 3 and 4. Relative solubility in water 

for 1 and 2 requires the presence of a NaCl aqueous subphase for proper film formation. 

Knowledge gained from this effort provides relevant insight toward the 

integration of amphiphilic properties in the design of photoresponsive precursors for 

modular films aimed at artificial photosynthetic processes. Our laboratories are currently 

working on the deposition of Langmuir−Blodgett (LB) films and their photophysical 

characterization. Integration of [catalytic centers/antennae] into LB films is also under 

development. 

5.4. Experimental Section 

Methods and materials used in this chapter are listed in Section 2.1 of Chapter 2. 

5.4.1. Syntheses. Preparation of the Ligands LPyI, LPyA, HLPhBuA, and HLPhClA. 

The ligands were synthesized according to the literature or used as purchased from the 

commercial source.15,16 General synthetic approaches for complexes 1−4 followed 

modifications of previously published procedures.4,14,17 The starting complex 

Ru(bpy)2(CF3SO3)2 was prepared according to the reported procedure.40 

5.4.2. Preparation of the Metallosurfactants [(LPyI)RuII(bpy)2](PF6)2 (1) and 

[(LPyA)RuII(bpy)2](PF6)2 (2). A 10 mL EtOH solution of cis-[Ru(bpy)2Cl2]·2H2O (0.520 

g, 1.0 mmol) was added dropwise to a 30 mL EtOH solution containing either LPyI (0.394 

g, 1.1 mmol) or LPyA (0.397 g, 1.1 mmol). In each instance, the resulting mixtures were 

stirred under mild reflux overnight (24 h) under an argon blanketing atmosphere and 
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protected from light. The solution was filtered while warm to eliminate unreacted solids, 

and the filtrate was concentrated to half of the original volume by rotary evaporation. 

Slow solvent evaporation after the addition of a saturated solution of NH4PF6 in MeOH 

precipitated the crude product which was filtered and washed with cold distilled water. 

The compound was purified by column chromatography using a neutral alumina column 

with toluene-acetonitrile (2:1) as eluent. The solvent was removed, and the product was 

dissolved in acetone. Slow solvent evaporation yielded an isolable dark red crystalline 

powder after drying under vacuum. 

1. Yield: 76%. Elemental anal. calcd for [C44H58F12N6P2Ru1]: C, 49.76, H, 5.50, 

N, 7.91%. Found: C, 49.83, H, 5.44, N, 7.89%. IR data (KBr, cm−1): 3084(w) (C−Harom); 

2920(s), 2851(s) (alkyl chain C−H stretches); 1606(m) (C═Npyr); 1466(s) (C═Carom); 

1162(m) (−C-N-); 846(s) (PF6
−). UV−visible data (ACN, 1.0 × 10−5 M): 239 (17 330), 

243 (17 530), 255 (16 030), 287 (44 120), 345 sh (4460), 432 sh (8940), 462 (11 080). 

1H−NMR (400 MHz, CDCl3): δ 8.97 (d, 4H), 8.42 (d, 1H), 8.34 (d, 4H), 7.96 (d, 1H), 

7.71−7.63 (m, 6H), 7.58 (s, 1H), 7.41 (t, 4H), 1.25 (m, 34H), 0.88 (t, 3H). MS data (ESI+ 

in MeOH): m/z = 386 (100%) for ([(LPyI)RuII(bpy)2]2+)/+2, m/z = 917 for [(LPyI)RuII(bpy)2 

+ (PF6
−)]+, and m/z = 771 for [(LPyI)RuII(bpy)2]2+ − H+. 

2. Yield: 79%. Elemental anal. calcd for [C44H60F12N6P2Ru1]: C, 49.67, H, 5.68, 

N, 7.90%. Found: C, 49.21, H, 5.68, N, 7.95%. IR data (KBr, cm−1): 3670(w), 3287(w) 

(N−H); 3086(w) (C−Harom); 2924(s), 2853(s) (alkyl chain C−H stretches); 1604(m) 

(C═Npyr); 1467(s), 1446(s) (C═Carom); 1162(m) (−C-N-); 840(s) (PF6
−). UV−visible data 

(ACN, 1.0 × 10−5 M): 245 (18 120), 291 (43 850), 342 (7450), 424 sh (4540), 472 (7070). 

1H−NMR (400 MHz, CDCl3): δ 9.06 (d, 4H), 8.50−8.42 (m, 5H), 8.35 (m, 5H), 8.06 (d, 
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1H), 7.52 (t, 1H), 7.40 (t, 4H), 4.44 (s, 2H), 1.97 (t, 2H), 1.74 (s, 1H), 1.24 (m, 32H), 

0.88 (t, 3H). MS data (ESI+ in MeOH): m/z = 387 (100%) for ([(LPyA)RuII(bpy)2]2+)/+2, 

m/z = 919 for [(LPyA)RuII(bpy)2 + (PF6
−)]+, and m/z = 773 for [(LPyA)RuII(bpy)2]2+ − H+. 

5.4.3. Preparation of the Metallosurfactants [(LPhBuI)RuII(bpy)2](PF6) (3) and 

[(LPhClI)RuII(bpy)2](PF6) (4). A 10 mL isopropanol or acetone solution of 

Ru(bpy)2(CF3SO3)2 (0.356 g, 0.5 mmol) was added dropwise to a 30 mL isopropanol or 

acetone solution containing either HLPhBuA (0.244 g, 0.5 mmol) or HLPhClA (0.222 g, 0.5 

mmol), respectively, and Et3N as base (0.076 g, 0.75 mmol) for deprotonation. Isolation 

and purification procedures were similar to those of 1 and 2. 

3. Yield: 72%. Elemental anal. calcd for [C53H74F6N5O1P1Ru1]: C, 61.02, H, 7.15, 

N, 6.71%. Found: C, 61.25, H, 7.35, N, 6.69%. IR data (KBr, cm−1): 3120(w), 3078(w) 

(C−Harom); 2922(s), 2857(s) (alkyl chain and tert-butyl C−H stretches); 1602(m) 

(C═Npyr); 1465(s), 1442(s), 1423(s) (C═Carom); 1260(m), 1234(m) (C−O); 1161(m) (−C-

N-); 841(s) (PF6
−). UV−visible data (ACN, 1.0 × 10−5 M): 248 (50 260), 294 (59 200), 

377 (13 870), 476 sh (7950), 521 (8550). 1H−NMR (400 MHz, CDCl3): δ 8.71 (d, 4H), 

8.22 (d, 4H), 8.05 (s, 1H), 7.83 (t, 4H), 7.75−7.73 (s, 2H), 7.41 (t, 4H), 3.15 (t, 2H), 1.24 

(m, 50H), 0.88 (t, 3H). MS data (ESI+ in MeOH): m/z = 898 (100%) for 

[(LPhBuI)RuII(bpy)2]+. 

4. Yield: 70%. Elemental anal. calcd for [C48H64Cl2F6N5O2P1Ru1]: C, 54.39, H, 

6.09, N, 6.61%. Found: C, 54.60, H, 6.05, N, 6.25%. IR data (KBr, cm−1): 3121(w), 

3077(w) (C−Harom); 2923(s), 2852(s) (alkyl chain C−H stretches); 1602(w) (C═Npyr); 

1459(s), 1442(s), 1418(s) (C═Carom); 1262(m) (C−O); 1172(m) (−C-N-); 842(s) (PF6
−). 

UV−visible data (ACN, 1.0 × 10−5 M): 247 (37 910), 295 (60 860), 363 (10 570), 519 



www.manaraa.com

113 
 

 

(8380). 1H−NMR (400 MHz, CDCl3): δ 8.62 (d, 4H), 8.36 (d, 4H), 8.19 (s, 1H), 8.11 (t, 

4H), 7.92−7.84 (s, 2H), 7.45 (t, 4H), 3.67 (t, 2H), 1.25 (m, 32H), 0.88 (t, 3H). MS data 

(ESI+ in MeOH): m/z = 856 (100%) for [(LPhClI)RuII(bpy)2]+. 
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special cluster issue entitled “Cooperative & Redox Non-Innocent Ligands in Directing 

Organometallic Reactivity.” 

Contributions to this work on my part included the synthetic, spectroscopic, and 

electrochemical characterizations along with the original draft of the manuscript. 

 

6.1. Introduction 

There is considerable interest in the development and characterization of redox-

active ligands with finely tuned potentials that act as electron reservoirs during catalytic 

processes.1 Among an ever growing group of such redox-active ligands, the species N,N'-

bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,2-diamine (H4L) has received substantial 

attention.2-5 Coordination compounds with this ligand demonstrate catalytic behavior in 

pseudooctahedral complexes with early transition metals and square planar complexes 

with late transition metals. Such metal complexes mediate reductive bond formation3-5 

and bioinspired aerobic oxidation,2 respectively, partially due to five ligand-based 

discrete oxidation levels. When complexed to metals, the most commonly observed 

ligand oxidation state is 2– (H4L → L2– + 4H+ + 2e–, Scheme 6.1 left), which can be 
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written with both closed shell2 and diradical electron configurations (only one shown). To 

our knowledge, however, similar adducts with middle 3d-metals (Mn, Fe, Co) have not 

received similar attention, despite the intriguing combination of this ligand with redox 

rich metals.1,6-8 Towards this goal, we report here an unprecedented ligand transformation 

of L2– whereby one of the phenolate/phenoxyl arms has cyclized to form a mixed 

phenolate/phenoxazinyl radical species, which we denote L'2– (L2– → L'2– + H+ + e–, 

Scheme 6.1 right). 

 

 

 
 
 
 
 
 
 
 

 

 

 

Phenoxazines, found in nature as potent chromophores,9-11 demonstrate efficient 

electron transfer and high luminescence quantum yields required for organic light-

emitting diodes and dye-sensitized solar cells.12 Pierpont et al. observed a related 

transformation involving cyclization of a Schiff base biquinone ligand to confer a 

phenoxazinylate radical anion.13,14 Defining a ligand shorthand for this new ligand is 

complicated by the fact that the bridging amide can conjugate with both arms. In the past, 

there has been reference to imino and diimino catecholate/semiquinonate redox behavior 

 

Scheme 6.1. Formation of the mixed phenolate/phenoxazinyl radical species from H4L. 
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when it was straightforward to group this nitrogen with a single arm of the ligand, e.g. 

phenolate or phenoxazinylate, respectively. We prefer to discuss the ligand as three 

fragments (Scheme 6.1, right): (i) the phenolate (PhO–, left box), (ii) the bridging amide 

(N–, overlap between boxes), and (iii) the phenoxazinyl radical (Phz•, right box). Thus, 

L'2– is abbreviated PhO––N––Phz•. While this description is inherently too localized a 

description, it emphasizes correctly whether the phenoxazinyl or phenolate arm is the 

major contributor to a given redox process.15 Herein, we describe the synthesis and 

characterization of the species [Co(L’)2]0 along with its rich redox chemistry. 

6.2. Results and Discussion  

Condensation of 3,5-di-tert-butylcatechol and o-phenylenediamine (2:1) together 

with Et3N in n-heptane generates H4L after four days of stirring at ambient temperature 

under aerobic conditions.2,4 Equimolar treatment of H4L with anhydrous CoCl2 in the 

presence of Et3N under aerobic conditions in acetonitrile afforded a microcrystalline 

precipitate of [Co(L')2]0. This stoichiometry does not seem to be affected by 1:1 vs. 2:1 

H4L:CoII loadings or by the equivalents of added base (see Appendix D). Dark green 

crystals suitable for X–ray analysis were obtained by slow evaporation from a 

CH2Cl2:CH3CN mixture (1:1), and the unanticipated bisligated structure, with each ligand 

coordinated in a [O–N–N'] (O1–N1–N2 / O3–N3–N4) meridional fashion, is presented in 

Figure 6.1. It is tempting to assign this neutral species as [CoII(L'1–)2]0 based on the fairly 

similar bond lengths within each of the two ligands (see Appendix D), however, 

averaged metal–ligand bond lengths of 1.896 ± 0.004, 1.882 ± 0.006, and 1.955 ± 0.002 

Å for Co–O, Co–N, and Co–N', respectively, strongly imply a low-spin cobalt(III) 

(LSCoIII) metal center.16-18 
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The formation of phenoxazinyl rings is known to occur in a basic, oxidizing medium for 

some aminocatechols.19 It is noteworthy that we have observed this ligand transformation 

in the presence of cobalt, but not manganese or iron ions under similar basic, oxidizing 

conditions.20 One plausible difference between these metals is that the CoII ion is capable 

of reducing dioxygen to superoxide.21 Anaerobic mixing of H4L and the cobalt salt 

affords the uncyclized metal-ligand adduct in a 2:1 ratio [CoII(HL)2]0, similar to the 

 

Figure 6.1. ORTEP diagram for [Co(L')2]•2MeCN showing 
50% probability of the thermal ellipsoids. Solvent and 
hydrogen atoms are excluded, and the tBu groups are 
truncated to the central quaternary carbon for clarity. Selected 
bond lengths (Å) and angles (°): Co(1)–N(1) 1.876(2), Co(1)–
N(3) 1.887(2), Co(1)–O(1) 1.892(2), Co(1)–O(3) 1.899(2), 
Co(1)–N(2) 1.953(2), Co(1)–N(4) 1.956(2); N(2)–Co(1)–
N(3) 104.83(8), N(2)–Co(1)–N(4) 92.64(8), O(1)–Co(1)–
N(3) 86.55(7), O(1)–Co(1)–O(3) 91.35(7), O(1)–Co(1)–N(1) 
84.80(7), O(1)–Co(1)–N(4) 89.33(7). 
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manganese species, as suggested by ESI mass spectrometric methods (see Appendix D). 

Pursuit of mechanistic details and the possible role of superoxide are ongoing, but are 

beyond the scope of this communication. 

In order to understand the oxidation and spin states of the metal ion and ligands in 

the [CoIII(L')2] species, we investigated multiple electronic structures with density 

functional theory (DFT) calculations.22 Two low energy structures were identified that 

are best described as a LSCoIII species with one unpaired electron, S = 1/2 (see Appendix 

D for structural details and comparison to X–ray structure). One has ligands in different 

oxidation states, 2– and 1–, while the other is symmetric and has formal charges of 1.5– 

for each ligand. We present the former because it does not invoke fractional electron 

charges, but it is important to note these species are isoenergetic suggesting multiple 

resonance forms are accessible. A corresponding orbital analysis23 of this localized 

species suggests that one ligand is in the PhO––N––Phz• oxidation state with an unpaired 

α electron (Figure 6.2 top), while the other ligand is in the PhO•–N––Phz• oxidation state 

with two antiferromagnetically coupled radicals (Figure 6.2 bottom). The overlap of the 

antiferromagnetically coupled orbitals is quite large at 0.8, and may suggest a closed-

shell description. However, all attempts to compute a structure with a closed-shell, 

localized 1– ligand collapsed to the delocalized structure with fractional ligand charges. 

The EPR derived g-value of 2.0 is consistent with the assignment of an organic radical, 

and despite the known shortcomings for predicting spin states of transition metal 

complexes a priori, DFT seems to capture correctly the physicochemical properties of 

[LSCoIII(PhO––N––Phz•)(PhO•–N––Phz•)]0.24,25 The unpaired electrons in the PhO––N––

Phz• and PhO•–N––Phz• ligands should demonstrate diagnostic intra- or inter-ligand 
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charge transfer bands, and we therefore measured the absorption spectrum to probe 

further the electronic structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The UV–visible spectrum of [LSCoIII(PhO––N––Phz•)(PhO•–N––Phz•)] was 

collected in CH2Cl2 (see Figure 6.3). Prominent σ → π* and π → π* transition bands 

positioned at 271 nm (88,770 L mol–1 cm–1) are succeeded by less intense shoulders at 

387 and 474 nm (16,630 and 9,660 L mol–1 cm–1). Just beyond the visible region is a 

broad, low-energy band centered at 871 nm (9,690 L mol–1 cm–1). TD-DFT calculations 

corroborate the existence of a broad absorption feature around 1,000 nm with an intensity 

of ~10,000 L mol–1 cm–1, which comprises transitions mostly corresponding to intra- and 

inter-ligand charge transfers.26 This assignment is consistent with earlier reports 

 

Figure 6.2. Contour plots (0.05 au) for the singly occupied (top) and AF 
coupled (bottom) orbitals resulting from the corresponding orbital 
analysis. Sαβ is the overlap integral for the AF coupled corresponding 
orbitals. 
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containing single and multiple phenoxazinolates,11,27-28 and with our hypothesis of one or 

more ligand-based radicals. 

 

 

 

 

 

 

 

 

 

 

 

Because the ligand can accommodate multiple oxidation levels in the ground state 

of the cobalt(III) complex, we investigated the redox behavior of [LSCoIII(PhO––N––

Phz•)(PhO•–N––Phz•)] by cyclic voltammetric methods in CH2Cl2 with TBA(tetra-n-

butylammonium)PF6 as supporting electrolyte. As Figure 6.4 demonstrates, five quasi-

reversible electrochemical responses are observed between 800 and –1300 mV vs. Fc+/Fc 

as the internal reference. The two redox couples at –1090 and –870 mV correspond to 

PhO––N––Phz•/PhO––N––Phz–,27-29 and are consistent with the phenoxazinylate being 

more electron rich than phenolate in the fully reduced PhO––N––Phz– state. The first two 

cathodic processes are followed at more positive potentials (–500 and –260 mV) by 

phenolate oxidation, PhO•–N––Phz•/PhO––N––Phz•.30-32 This description supports 

 

Figure 6.3. Experimental (solid) and simulated (dashed) UV–visible 
absorption spectrum of [LSCoIII(PhO––N––Phz•)(PhO•–N––Phz•)2]0 in 
CH2Cl2. 
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qualitatively the proposed electronic structure, which has two phenoxazinyl-based 

radicals and one phenoxyl-based radical. The redox process at 370 mV is presumably the 

formal oxidation of the amide (PhO•–N•–Phz•/PhO•–N––Phz•), though the remaining 

charge may be quite delocalized. One further oxidation is observed at 650 mV, though 

this process is highly irreversible and seems to correspond to transfer of more than one 

electron. If correct, this scheme suggests that the [LSCoIII(PhO––N––Phz•)(PhO•–N––

Phz•)] complex can access oxidation states ranging from 2+ to 3– with no metal-based 

redox events. We are currently pursuing a detailed experimental and computational 

characterization of the intermediate oxidation states within this redox series, aiming to 

compare them to the redox behavior of the manganese species with uncyclized ligands, 

[Mn(HL)2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. CV trace in CH2Cl2, with 0.1 M TBAPF6, and 1.0×10-

3 M [LSCoIII(PhO––N––Phz•)(PhO•–N––Phz•)], 150 mV s–1; mV vs. 
Fc+/Fc. Insets are representations of the cathodic ligand redox 
events, with only one resonance structure shown for each. 
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6.3. Conclusions  

In summary, we have reported a serendipitous functionalization of the redox-

active ligand H4L in the presence of a cobalt(II) salt affording the new mixed 

phenoxazinylate/phenoxylate ligand L'. Multiple oxidation levels were accessible within 

this ligand when templated to a LSCoIII metal center in a 2:1 ratio, which DFT describes 

as [LSCoIII(L'1–)(L'2–)]. We anticipate the rich redox chemistry exhibited by this bisligated 

complex, with five reversible, one-electron responses, to be an important electron 

reservoir motif towards our ultimate goal of multimetallic catalytic assemblies. 

6.4. Experimental Section 

Methods and materials used in this chapter are listed in Section 2.1 of Chapter 2. 

6.4.1. Syntheses. Preparation of the H4L ligand. H4L was prepared as described 

by Chaudhuri et al.,2 incorporating the purification steps recommended by Heyduk and 

co-workers4 to result in ca. 50% overall yield. 

6.4.2. Preparation of [LSCoIII(PhO––N––Phz•)(PhO•–N––Phz•)]. Anhydrous 

CoCl2 (0.130 g, 1 mmol) and Et3N (0.2 mL) were added to a solution of H4L (0.517 g, 1 

mmol) in CH3CN (25 mL) and the resultant mixture was refluxed for 1 h followed by 

stirring at ambient temperature for 4 h while exposed to air. A dark brown 

microcrystalline solid was collected by filtration and washed with CH3CN. Yield: 40%. 

Elemental analysis calcd (%) for [C68H86CoN4O4]: C 75.18, H 8.35, N 5.16; found: C 

74.90, H 8.05, N 5.10. IR data (KBr, cm–1): 2955, 2906, 2869 (νC–H, tBu), 1528, 1479, 

1457 (νC–O/νC–N, Phz/PhO). UV–visible (CH2Cl2, 1.0 × 10–3 M): 271 (88,770); 387 sh 

(16,630); 474 sh (9,660); 871 (9,690). ESI+–MS data (in CH2Cl2): m/z = 1082.61 (100%) 

for [M + H]+. 
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The iron and gallium results described here are in preparation for submission to  

Inorganic Chemistry as a full paper. 

Contributions to this work on my part included the synthetic, spectroscopic, and 

electrochemical characterizations along with the original draft of the manuscript. 

 

7.1. Introduction 

Ligand platforms capable of forming radical species when coordinated to 

transition metals cooperatively merge distinctive electronic, redox, and spectroscopic 

behavior. Extensive attention has been focused on the design of redox-active ligands to 

enhance the reaction chemistry of coordination compounds with early transition metals to 

induce noble-transition-metal reactivity.1–3 Of these, one intriguing example that has left a 

substantial impact is the prevalently investigated N,N’-bis(3,5-di-tert-butyl-2-

hydroxyphenyl)-1,2-phenylenediamine ligand, denoted as H4L. The widespread attention 

that this ligand has received is based on the rich electrochemical and spectroscopic 

responses observed when bound to various metal centers. Multiple oxidation levels, with 

distinctly associated spin states, are energetically available to such systems that offer the 

capacity to act as electron reservoirs.3 The peculiar electronic nature inherent to redox-
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active transition metal complexes merely complicates the proper assignment and 

identification of the diverse redox states observed.4 

Owing to the appealing multi-electron reactivity derived from the intrinsic ligand-

centered phenomena, prior studies have exploited this robust H4L framework for its 

catalytic behavior. Initially, square planar complexes of Cu(II) and Zn(II) were prepared 

as effective catalyst models for the selective aerobic oxidation capability of the 

metalloenzyme galactose oxidase.5 Recent accounts establish the viability of d0 group IV 

metal centers coordinated to this ligand precursor for active multi-electron catalysis 

supported by ligand-based valence changes, including disproportionation of 

diphenylhydrazine and hetero-selective polymerization of rac-lactide.6–8 In parallel, 

considerable interest has been focused on the implication of semiquinonate, catecholate, 

and diimine scaffolds for serving as candidates for such dynamic concepts of spin-

crossover and bistable molecular information storage given the capacity for 

interconversion between degenerated electronic states.9–11   

 Thus far, only 1:1 complexes of L2– (H4L → L2– + 2e– + 2H+) with early (d9-CuII, 

d10-ZnII) and late (d0-TiIV, d0-ZrIV) transition metals have been described. In this chapter, 

the H4L ligand is reacted with selected trivalent (d5-FeIII, d10-GaIII) metal ions to 

consequently lead to five- and six-coordinate complexes, respectively. Herein we 

spotlight an unprecedented oxidation state of L2– when complexed to a metal ion and 

discuss the distinct structural and spectroscopic features observed. 

7.2. Results and Discussion 

 7.2.1. Syntheses and Characterizations. As established by Chaudhuri and co-

workers,5 the condensation of 3,5-di-tert-butylcatechol and o-phenylenediamine (2:1) 
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together with a catalytic amount of Et3N in n-heptane generates the ligand N,N’-bis(3,5-

di-tert-butyl-2-hydroxyphenyl)-1,2-phenylenediamine, H4L, after 4 days of stirring at 

ambient temperature under aerobic conditions. Purification steps described by Blackmore 

et al.7 were incorporated. Experimental analyses of H4L are in agreement with the prior 

published data. General synthetic methodologies12,13 were tailored for complexation of 

H4L with select trivalent metal chloride salts. Reaction of GaCl3 with the H4L ligand 

(1:1) employing Schlenk conditions in dry CH3OH with a catalytic amount of Et3N 

produced a pink-colored solution. Exposure to compressed O2 yielded a dark violet 

solution from which a dark microcrystalline solid of [Ga(L)(Cl)(CH3OH)] (1) resulted. 

Equimolar treatment of FeCl3·6H2O with H4L in the presence of Et3N under aerobic 

conditions in CH3CN affords a blue-green microcrystalline precipitate of [Fe(L)(Cl)] (2).  

Characterization of compounds 1 and 2 consisted of electrospray ionization (ESI+) 

mass spectrometry, elemental analysis, cyclic voltammetry, variable-temperature 

magnetic susceptibility measurements, as well as infrared, UV−visible, and electron 

paramagnetic resonance (EPR) spectroscopies. Density functional theory (DFT) 

calculations provided valuable insight to assist in the interpretation of the electronic 

structures of these species (see Appendix E for details). Elemental analyses of 1 and 2 

show excellent agreement to the theoretical percentages, and the ESI+ mass spectra 

exhibit the pertinent m/z peak clusters for the compositions correlating to 

[Ga(C34H44N2O2)(CH3OH) – Cl]+ for 1 and [Fe(C34H44N2O2) – Cl]+ for 2 in CH2Cl2. The 

absence of characteristic frequency bands beyond 3300 cm-1 in the infrared spectra 

further establishes complex formation for each case. These bands are ascribed to the ν(N–

H) and ν(O–H) vibrational modes that appear only in the spectrum of the protonated form 
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of the ligand. 1H−NMR spectroscopy suggests species 1 is diamagnetic and species 2 is 

paramagnetic. Crystals of 1 and 2 suitable for X−ray diffractometry were recrystallized 

from 1:1 mixtures of CH2Cl2:CH3OH and CH2Cl2:CH3CN, respectively. 

 7.2.2. Molecular and Electronic Structures. Previous work with H4L led to the 

synthesis, isolation, and characterization of 1:1 complexes of L2– (H4L → L2– + 2e– + 

2H+) with early and late transition metals to afford four-coordinate (d9-CuII, d10-ZnII) and 

six-coordinate (d0-TiIV, d0-ZrIV) species, respectively. Cyclic voltammetry suggests five 

redox states are accessible to the coordinated ligand. In the isolated examples of these 

complexes, the ligand is usually in a 2– oxidation state. Starting from the reduced and 

fully deprotonated ligand, L4–, oxidation should occur at anionic N before O due to 

differences in electronegativity (Scheme 7.1, left). From this canonical starting point, one 

can envision resonance isomers representing an o-diiminoquinone at the 

phenylenediamine moiety (Scheme 7.1, top right) or an o-diiminocatechol bridge with 

two phenolate radicals (Scheme 7.1, bottom right). Herein we distinguish these as L2–,Q 

and L2–,••, respectively. We have only drawn one of the possible phenolate radical 

resonance isomers. The conjugation pattern at the top right of Scheme 7.1 was deduced 

from extensive experimental characterization for the known ML complexes. 
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Our structures serve to fill the gap between MII and MIV complexes to see how 

binding of this ligand changes with metal oxidation state. The ORTEP diagrams for 1 and 

2 are presented in Figure 7.1, and selected bond lengths and angles are listed in Table 

7.1 with comparisons to the previously known L2– adducts. More extensive lists of bond 

lengths and angles for 1 and 2 may be found in Appendix E (Table E.7.1). Gallium is 

unquestionably in the d10-GaIII oxidation state, however, iron has multiple oxidation and 

spin states available. 

  

 

Scheme 7.1. Resonance isomers of H4L. 
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Figure 7.1. Perspective view ORTEP diagrams for 1 (top) and 
[2]·0.5CH3CN·0.5CH2Cl2 (bottom) showing 50% probability of the thermal 
ellipsoids. Non-coordinated solvents and hydrogen atoms are excluded for 
clarity. Selected bond distances (Å) for 1: Ga(1)-O(2) 1.877(3), Ga(1)-O(1) 
1.880(3), Ga(1)-N(1) 2.024(3), Ga(1)-N(2) 2.025(3), Ga(1)-Cl(1) 2.224(12), 
Ga(1)-O(3) 2.329(6). For 2: Fe(1)-O(2) 1.942(11), Fe(1)-O(1) 1.948(11), Fe(1)-
N(1) 2.022(13), Fe(1)-N(2) 2.044(13), Fe(1)-Cl(1) 2.220(5). 
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Table 7.1. Structural comparison of the M–L and some intraligand bond lengths (Å). 

 

Å M–O M–N O–C1 C1–C2 C2–N N–C3 C3–C3’ C3–C4 C4–C5 C5–C5’ O–C1 
GaIII

 1.88 2.02 1.32 1.44 1.38 1.32 1.49 1.43 1.35 1.43 1.32 
FeIII

 1.95 2.03 1.30 1.45 1.34 1.39 1.42 1.40 1.39 1.39 1.30 
aCuII 1.93 1.94 1.31 1.45 1.37 1.34 1.47 1.43 1.36 1.42 1.31 
aZnII 1.93 1.94 1.32 1.45 1.37 1.34 1.48 1.43 1.36 1.43 1.32 
bTiIV 1.87 2.11 1.33 1.42 1.39 1.34 1.48 1.43 1.35 1.44 1.33 
cZrIV 2.09 2.30 1.33 1.42 1.39 1.34 1.46 1.42 1.36 1.42 1.33 
dAvg. -- -- 1.33 1.44 1.38 1.34 1.48 1.43 1.36 1.43 1.33 

        a reference 5; b reference 7; c reference 6; d Averages of Ti, Zr, Zn an Cu structures 
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The coordination environment for the gallium(III) center in the neutral molecular 

structure of 1 is approximately octahedral, where the fully deprotonated ligand is 

equatorially coordinated through an N2O2 donor set and the axial positions are occupied 

by a chlorido ligand (Ga–Cl 2.22 Å) and a bound solvent molecule of methanol (Ga–

OMeOH 2.33 Å). We assign this ligand as methanol versus methoxide based on the 2.33 Å 

bond length that falls outside the range of GaIII–Oalkoxide distances (1.91–2.10 Å).14 The 

N2O2 macrocycle is approximately planar as evidenced by a side-on, in-plane view of 1 

(Figure E.7.1). Moreover, the gallium(III) ion sits slightly above the equatorial plane 

positioned towards the apical chlorido ligand. Within the macrocyclic pocket the Ga–O 

and Ga–N bond lengths of 1.88 and 2.03 Å15 indicate that the metal is off-centered 

towards the oxygens. This is further supported by the interplane angles composed of 

adjacent corner atoms of the GaN2O2 core (N–Ga–N’ 79.5o, O’–Ga–N’ 83.9o, O’–Ga–O 

105.0o, and O–Ga–N 83.6o). Based on these coordination sphere metrics, we conclude 

that we have GaIII, Cl–, CH3OH, and L2–. 

Within the coordinated ligand L2–, characteristic localized double bonds are found 

for N–C3 (1.32 Å) and C4–C5 (1.35 Å) while single bonds are observed for C2–N (1.38 

Å), C3–C3’ (1.49 Å), C3–C4 (1.43 Å), and C5–C5’ (1.43 Å). These values match well 

with the averaged intraligand bond lengths for previously reported structures (Table 7.1): 

N–C3 (1.34 Å), C4–C5 (1.36 Å), C2–N (1.38 Å), C3–C3’ (1.48 Å), C3–C4 (1.43 Å), and 

C5–C5’ (1.43 Å). Bond lengths within the phenolate arms are also consistent with earlier 

reports, but they are not diagnostic (vide infra). The bonding pattern in the bridging unit 

is representative of an o-diiminoquinone16 moiety allowing us to conclude that species 1 

contains L2–,Q.  
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X–ray crystallographic structural determination of [2]·0.5CH3CN·0.5CH2Cl2 

shows a monoligated iron center in an approximate square pyramidal geometry (Figure 

7.1, τ = 0.1317) with an apical chlorido ligand (Fe–Cl 2.22 Å). An approximate vertical 

plane of symmetry (σv) bisects the basal plane through this chlorido ligand. Angles 

containing adjacent vertex atoms of the basal plane (N–Fe–N’ 75.9o, O’–Fe–N’ 78.9o, 

O’–Fe–O 101.5o, and O–Fe–N 79.2o) reveal a deviation from the expected interplane 

angles of 90o for a perfect square pyramidal coordination sphere. Thus, five-coordinate 

iron allows for considerable distortion of the N2O2 donor set environment from planarity, 

in contrast to the six-coordinate gallium(III) species (see Figure E.7.1 for comparative 

side-on views). The bond distances of 1.95 and 2.03 Å for Fe–O and Fe–N, respectively, 

are in agreement with analogous N2O2 imino-catecholate donor frameworks and suggest 

a high-spin d5 ferric ion (HSFeIII) in 2.12,18,19 Based on the structural parameters of the 

HSFeIII coordination environment and reinforcement by DFT studies (vide infra), we 

assign the ligand oxidation state as 2–. The ligand electronic structure differs from that of 

all other metal adducts characterized to date. 

In our gallium(III) species and the previously reported structures, a characteristic 

localized bonding pattern in the phenylenediamine moiety, including a short N–C3 and 

long C2–N bond, points to an o-diiminoquinone oxidation state of the bridge (L2–,Q). By 

contrast, species 2 demonstrates delocalized C–C bonds (1.39–1.42 Å) within the 

phenylenediamine bridge moiety.16 More importantly, the N–C3 and C2–N bond lengths 

of 1.39 and 1.34 Å, respectively, are in direct contrast to previously observed bond 

lengths (Table 7.1). These data indicate collectively that the bridging moiety in 2 should 

be considered an o-diiminocatechol, thereby placing radicals on the phenolate arms and 
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therefore L2–,••. Unfortunately, bonding within the phenolate arms is not diagnostic for the 

presence or absence of radicals because all C–C bond lengths are ~1.4 Å regardless of 

metal identity (Table E.7.2). While the O–C1 bond length in the HSFeIII species is shorter 

than for GaIII, the difference of only 0.02 Å (1.30 vs. 1.32 Å) is ambiguous. We turned to 

DFT calculations to test this proposed electronic structure of a HSFeIII ion complexed to a 

ligand with two phenolate radicals.  

Calculations were performed at the B3LYP/6-31G(d,p) level of theory employing 

the IEF-PCM continuum solvation model in a development version of Gaussian. The tBu 

groups on the phenolate rings are critical experimentally because of their steric protection 

for the phenolate radicals. We are not likewise restricted computationally, and because 

tBu and Me groups are almost equally electron donating (σpara = –0.17 and –0.20, 

respectively)20 we simplify our computational models for efficiency. We confirm the 

electronic structure for the six-coordinate GaIII species by calculating: (i) an overall S = 0 

state that should converge to an electronic structure similar to L2–,Q and (ii) an open-shell 

S = 1 electronic structure which should correspond to the diradical form L2–,••. As the 

metrics in Table 7.2 demonstrate, the intraligand bond lengths in GaIII–L2–,Q are more 

consistent with the X–ray structure than those for GaIII–L2–,••, especially the ordering of 

C2–N > N–C3 for L2–,Q but C2–N < N–C3 for L2–,•• and the more localized bonding of 

the C–C bonds in the bridging unit. The largest discrepancy between the values in Table 

7.2 for the computed GaIII–L2–,Q structure and experiment is in the Ga–O bond lengths (Δ 

= ~0.04 Å), but still consistent with the methodology accuracy. 
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Table 7.2. Structural comparison between experiment and computation for the M–L and some intraligand bond lengths (Å). See 
Table 7.1 for numbering scheme. 

Å M–O M–N O–C1 C1–C2 C2–N N–C3 C3–C3’ C3–C4 C4–C5 C5–C5’ 
GaIII

exp–L2– 1.88 2.02 1.32 1.44 1.38 1.32 1.49 1.43 1.35 1.43 
GaIII

calc–L2–,Q, 
S=0 1.92 2.03 1.32 1.45 1.37 1.33 1.49 1.43 1.37 1.43 

GaIII
calc–L2–,••, 
S=1 1.94 2.00 1.31 1.46 1.35 1.38 1.45 1.40 1.39 1.40 

FeIII
exp 1.95 2.03 1.30 1.45 1.34 1.39 1.42 1.40 1.39 1.39 

FeIII
calc, S=3/2 1.96 2.06 1.30 1.46 1.34 1.39 1.44 1.40 1.39 1.40 
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Multiple oxidation and spin states were tested as guess wavefunctions for the Fe 

species. The lowest energy neutral species is best described as having a HSFeIII ion 

antiferromagnetically (AF) coupled to the ligand with an oxidation state consistent with 

L2–,••. The spin density plot of this species is shown in Figure 7.2, where excess α density 

is shaded blue and excess β density is shaded white. Most of the α density is concentrated 

at Fe/Cl, while the β density is located primarily on the phenolate rings and not the 

phenylenediamine backbone. Structurally, excellent agreement between the computed 

and experimental structures is found with the largest deviation being 0.03 Å for the 

comparatively weak Fe–N bonds, and 0.02 Å within the ligand for C3–C3’. 

 

 

 

 

 

 

 

 

 

7.2.3. Electronic Spectroscopy. It stands to reason that species 2 should have an 

electronic absorption spectrum more similar to o-iminosemiquinone complexes than 

species 1 and the other known L2–,Q metal species. In fact, UV–visible spectroscopic 

characterization helped distinguish between the different accessible oxidation levels of 

 

Figure 7.2. Isodensity plot (0.002 au) for the spin density of the 
lowest energy computed FeIII species. Blue and white correspond to 
excess α and β density, respectively. 
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single O,N-coordinated o-iminophenolate, o-iminobenzosemiquinonate, and o-

iminobenzoquinone ligands.16 Thus, we measured the UV–visible spectra in 10-3 to 10-5 

M CH2Cl2 solutions. Pertinent absorption maxima and molar extinction coefficients are 

listed in Table 7.3. Experimental (solid) and calculated (dashed) absorption spectra for 1 

(black) and 2 (grey/red) between 300–1100 nm are shown in Figure 7.3. Overall 

excellent agreement is observed, though the calculated intensities are consistently 

overestimated. 

Table 7.3. UV–visible Parameters for Complexes 1 and 2. 

Complex Absorption, λabs (nm) / ε (Lmol-1 cm-1)a 

1 270 (28,450); 334 (14,730); 459 (3,890);  

572 (4,990); 697 sh (4,970); 999 (15,980) 

2 277 (89,890); 340 (16,950); 455 (7,830);  

500 (7,120); 641 (5,600); 856 sh (4,620) 

  a Spectra measured in 1.0 x 10-5 M dichloromethane solution. 

  

 

Figure 7.3. Absorption spectra of complexes 1 (black) and 2 
(grey) in dichloromethane, 1.0 x 10-5 M. Experimental absorption 
curves are solid, while TD-DFT fitted curves are dashed. 

 



www.manaraa.com

149 
 

 

The ultraviolet region of the spectra for both 1 and 2 demonstrate intraligand σ → 

π* and π → π* bands with maxima centered near 275 and 335 nm. For 1, the low-energy 

region of the spectrum is dominated by an intense band at ~1000 nm (15980 L 

mol−1cm−1). This absorption band has likewise been observed in for ZnII 5 and group IV 

metal complexes7 containing L2–,Q, but is noticeably absent for the iron species 2. TD-

DFT calculations show a transition at ~970 nm corresponding to a phenolate π → o-

diiminoquinone π* transition (HOMO → LUMO), and thus explaining the absence of 

such a transition for HSFeIII–L2–,•• which lacks the diiminoquinone functionality. Orbital 

excitations for the principle components of the absorption bands may be found in Table 

E.7.3 of Appendix E. The bands observed at 459, 572, and 697(sh) nm (3890, 4990, and 

4970 L mol–1 cm–1, respectively) are also assigned to phenolate π → o-diiminoquinone π* 

transitions involving lower lying occupied orbitals (HOMO-3 to HOMO-1) based on 

computed transitions at 423, 576, and 673 nm. Four maxima are observed for 2 between 

450-900 nm with relatively low intensity molar absorptivities (ɛ < 104 M–1 cm–1). This 

fingerprint agrees well with earlier reports of HSFeIII complexes with o-

iminosemiquinonate ligands.16 These bands arise from a complicated mixture of ligand-

to-metal charge transfer (LMCT) and intraligand excitations. The shoulder at 856 nm 

(4620 L mol–1 cm–1) comprises nearly equal contributions of both types based on a 

computed transition at 880 nm. The band at 641 nm (5600 L mol–1 cm–1) is mostly 

MLCT based on a computed band at 683 nm. Peaks at 455 and 500 nm (7830 and 7120 L 

mol–1 cm–1) are intraligand π → π* transitions with up to 30% MLCT character, based on 

computed peaks at 422 and 497 nm, respectively. 
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7.2.4. Electrochemistry. The cyclic voltammogram (CV) of 2 in CH2Cl2 with 0.1 

M TBA(tetra-n-butylammonium)PF6 supporting electrolyte at a scan rate of 100 mV s-1 

exhibits a single one-electron-transfer anodic wave and two one-electron-transfer 

cathodic process with potentials referenced versus the ferrocenium/ferrocene Fc+/Fc 

couple (Figure 7.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of the three successive redox waves, the first two are associated with reversible oxidative 

couples and the third corresponds to a quasi-reversible reductive process. All of these 

redox couples are ascribed to be ligand-centered processes based on the potential values 

comparable to those observed in 1 (Table 7.4).  

 

Figure 7.4. CVs of 1 and 2 in dichloromethane, TBAPF6, vs Fc+/Fc. 
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Table 7.4. Cyclic voltammetry data for 1 and 2.[a] 

Complex Reductions[b] 

E1/2 (ΔEp) [V], | Ipc/Ipa | 

Oxidations[c] 

E1/2 (ΔEp) [V], | Ipc/Ipa | 

1 –1.13 (0.10), |1.50|; –0.66 (0.12), |1.05| 0.47 (0.09), |0.12| 

2 –1.33 (0.12), |2.07|; –0.59 (0.11), |1.00| 0.30 (0.10), |0.70| 
[a] CVs of 1 and 2 at 1.0 x 10-3 mol L-1 in dichloromethane with 0.1 M TBAPF6 supporting electrolyte using 
a scan rate of 100 mV s-1 for 1 and 2 at RT in an inert atmosphere. [b] Potentials listed as the cathodic peak 
potential Epc versus Fc

+/Fc. [c] Potentials listed as the anodic peak potential Epa versus Fc
+/Fc. 

 

It has been previously demonstrated that complexes of the H4L ligand,5 and other related 

systems,16 display similar redox potentials irrespective of the nature of the coordinated 

metal. The observed redox equilibria in 2 is nearly consistent with analogous complexes 

containing three O,N-coordinated o-iminobenzosemiquinonate(1-) π radical anions 

(LISQ)- about a central iron(III) metal ion.21,22 Therefore, the processes occurring at E1/2 = 

0.30 V (ΔEp = 0.10; |Ipc/Ipa| = 0.70) and –0.59 V (ΔEp = 0.11; |Ipc/Ipa| = 1.00) vs. Fc+/Fc 

can be tentatively assigned to the respective o-iminobenzosemiquinonate/o-

iminobenzoquinone oxidative couples observed. Accordingly, the wave appearing at E1/2 

= –1.33 V (ΔEp = 0.12; |Ipc/Ipa| = 2.07) vs. Fc+/Fc is suggestive of the complementary o-

iminobenzosemiquinonate/o-imino-phenolate reductive process. 

8.3. Summary 

Based on the evidence gathered to this point, we conclude that 1 can be best 

described as the six-coordinate [GaIII(L2–,Q)(CH3OH)(Cl)] complex containing the 

previously documented o-diiminoquinone oxidation state of the phenylenediamine bridge 

moiety. Preliminary magnetic and EPR measurements were made to test the prediction of 

a strongly antiferromagnetically coupled system for compound 2. The magnetic data 

corroborate an overall spin state of S = 3/2 derived from two S = 1/2 organic radicals 
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strongly antiferromagnetically coupled to the iron(III) center with S = 5/2. From the 

collective structural, computational, magnetic, and EPR data, we deduce that 2 is best 

described as the five-coordinate [HSFeIII(L2–,••)(Cl)] species comprised of the o-

diiminocatechol form of the bridging moiety with radicals on the phenolate arms. 

8.4. Experimental Section 

 Methods and materials used in this chapter are listed in Section 2.1 of Chapter 2. 

8.4.1. X–ray Structural Determinations for 1 and 2. Diffraction data were 

measured on a Bruker X8 APEX-II kappa geometry diffractometer with Mo radiation and 

a graphite monochromator. Frames were collected at 100 K with the detector at 40 mm 

and 0.3 degrees between each frame and were recorded for 10 s unless otherwise noted. 

APEX-II23 and SHELX24 software were used in the collection and refinement of the 

models. Table 7.5 shows the collected crystal data for structures 1 and 2.   

Compound [Ga(L)(Cl)(CH3OH)] (1) crystallized as colorless dark green plates. 

Harvested were 38062 hkl data points, which averaged to 8161 data (Rint = 0.053). 

Hydrogen atoms were calculated or observed. The solvent region contains a disordered 

molecule of methanol, distributed into 2 half-occupancy positions which were kept 

isotropic during refinement. Crystals of [Fe(L)(Cl)]·0.5CH3CN·0.5CH2Cl2 (2) appeared 

as dark flat parallelepipeds. Measured were 109464 reflections, yielding 13859 unique 

data (Rint = 0.060). Hydrogen atoms were placed in calculated positions. Two sets of tert-

butyl groups were described on C23 with positional disorder, refined using partial 

occupancy sites and held isotropic. The solvent region was also disordered and appears to 

be ½ acetonitrile and ½ dichloromethane per equivalent of iron complex. The density 
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from this solvent region was added via the SQUEEZE program in the PLATON suite of 

software.25 

Table 7.5. Crystal Dataa 

 [Ga(L)(Cl)(CH3OH)] (1) [Fe(L)(Cl)]·0.5CH3CN·0.5CH2Cl2 (2) 

Formula C35H48ClGaN2O3 C35.50H46.50Cl2FeN2.50O2 
M 649.92 667.00 

Space group C2/c P(21)/c 
a / Å 32.4909(12) 14.8640(5) 
b/ Å 9.2772(3) 19.0928(7) 
c/ Å 24.1691(10) 12.4873(4) 
α/ o   
β/ o 113.752(3) 91.310(2) 
γ/ o   

V/ Å3 6668.1(4) 3542.9(2) 
Z 8 4 

T/ K 100(2) 100(2) 
λ/ Å 0.71073 0.71073 

Dcalc/ g cm-3 1.295 1.250 
µ/ mm-1 0.941 0.609 
R(F) (%) 7.23 5.35 

Rw(F) (%) 16.99 13.87 
a R(F) = ∑║Fo│-│Fc║ ∕ ∑│Fo│ for I > 2σ(I); Rw(F) = [∑w(Fo

2 – Fc
2)2 / ∑w(Fo

2)2]1/2 for I > 2σ(I). 

8.4.2. Syntheses. Preparation of the Ligand N,N’-Bis(3,5-di-tert-butyl-2-

hydroxyphenyl)-1,2-phenylenediamine (H4L). The previously reported procedure by 

Wieghardt5 was followed for the synthesis of the H4L ligand and the recommended 

purification steps suggested by Heyduk7 were integrated to result in an overall 45% yield. 

Characterization by means of 1H–NMR spectroscopy and electrospray ionization (ESI-

MS) mass spectrometry are in accord with the literature data. 

 8.4.3. Preparation of the Complexes. Complex 1 [Ga(L)(Cl)(MeOH)]. The 

ligand H4L (0.517 g, 1 mmol) was dissolved in anhydrous methanol (30 mL) and treated 

with GaCl3 (0.176 g, 1 mmol) under an argon atmosphere. Distilled Et3N (0.2 mL) was 

added to the resulting solution and the mixture was stirred under reflux for 1 h. 
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Compressed O2 was introduced to the pink solution, which turned dark violet, and for an 

additional 2 h was stirred at ambient temperature. Concentration of the suspension to one-

fourth of its initial volume yielded a dark microcrystalline solid isolated by filtration and 

washed with cold CH3OH. Recrystallization by slow evaporation from a CH2Cl2/CH3OH 

(1:1) solvent mixture afforded suitable crystals for X–ray analysis. Yield: 71%. 

Elemental anal. calcd for [C35H48ClGaN2O3]: C, 64.68, H, 7.44, N, 4.31 %. Found: C, 

64.84, H, 7.31, N, 4.57 %. IR data (KBr, cm-1): 2955, 2906, 2867, 1499, 1387, 1361, 

1311, 1288, 1256, 1165, 1132, 1113, 1025, 983, 913, 852, 747, 659, 593. UV–visible 

data (DCM, 1.0 x 10-5 M): 270 (28,450); 334 (14,730); 459 (3,890); 572 (4,990); 697 sh 

(4,970); 999 (15,980). MS data (ESI+ in CH2Cl2): m/z = 613.29 (100%) for [M – Cl]+.  

8.4.4. Complex 2 [Fe(L)(Cl)]. A 25 mL MeCN solution of the ligand H4L (0.517 

g, 1 mmol) was treated with FeCl3·6H2O (0.270 g, 1 mmol) and Et3N (0.2 mL). The 

resulting solution was stirred for 1 h at room temperature in the presence of air. 

Separating from this solution was a blue-green microcrystalline solid which was filtered 

and washed with acetonitrile. Recrystallization by slow solvent evaporation from a 

CH2Cl2/CH3CN (1:1) mixture yielded X–ray quality crystals. Yield: 75%. Elemental 

anal. calcd for [C34H44ClFeN2O2]: C, 67.61, H, 7.34, N, 4.64 %. Found: C, 67.91, H, 

7.39, N, 4.77 %. IR data (KBr, cm-1): 2959, 2868, 1734, 1586, 1522, 1469, 1413, 1388, 

1363, 1259, 1202, 1173, 1106, 1025, 994, 909, 889, 852, 779, 755, 645, 595. UV–visible 

data (DCM, 1.0 x 10-5 M): 277 (89,890); 340 (16,950); 455 (7,830); 500 (7,120); 641 

(5,600); 856 sh (4,620). MS data (ESI+ in CH2Cl2): m/z = 568.27 (100%) for [M – Cl]+. 
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CHAPTER 8 

CONCLUSIONS AND PERSPECTIVES 

8.1. Overall Conclusions 

The research of our group has been predominantly concerned with gaining insight 

into the underlying principles of preserving the rich electrochemical, spectroscopic, and 

magnetic properties of coordination complex systems that demonstrate effective activity 

in solution-based analyses for ordered surface deposition onto solid interfaces. 

Investigating the fundamental concepts of the specific objectives of (i) designing 

candidates for the formation of redox-responsive monolayer films, and (ii) achieving 

solar photocatalytic water oxidation are actively being undertaken in our laboratories by 

applying conceptual approaches and strategies. The research projects presented in this 

dissertation have afforded significant impacts toward these targets, in which my efforts 

were mainly concentrated on modulating the observed responsivity by synthetically 

enhancing our systems, either by controlling through the selection of metal incorporation 

or by tuning the ligand framework design. As outlined below, numerous metal ions and 

diverse ligand platforms have been deliberately integrated into our systems to serve 

distinct functions. 

In Chapter 3, the first Research Goal of developing responsive metal-containing 

surfactants that serve as precursors for Langmuir–Blodgett films has been addressed 

through the synthesis and characterization of the metallosurfactants [NiII(LtBuODA)(OAc)], 

[NiII(LtBuODA)2], [CuII(HLtBuODA)(LtBuODA)]ClO4·CH3OH, and [ZnII(HLtBuODA)2](ClO4)2 

{where HLtBuODA = 2,4 - di- tert- butyl- 6- [(octadecyl (pyridine-2-ylmethyl) amino) 

methyl] phenol} in an attempt to establish how coordination modes and protonation 
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preferences relate to amphiphilic behavior. The archetypical compounds 

[NiII(LtBuI)(OAc)]·CH3OH, [NiII(LA)2]·CH3OH·H2O, [NiII(LtBuA)2]·2CH3OH, 

[CuII(HLtBuA)(LtBuA)]ClO4, and [ZnII(HLtBuA)(LtBuA)]ClO4 were synthesized to model the 

stoichiometric, coordination, and protonation chemistry in the waxy metallosurfactants. 

Detailed data analysis and comparison between the metallosurfactants and the archetypes 

involved mass spectrometric and spectroscopic methods along with crystallographic 

determination of the archetypes. DFT calculations were used to identify the frontier 

orbitals, polarizability, and dipole moments. Metallosurfactant species had their 

compression isotherms measured and monitored by means of Brewster angle 

miscroscopy. The [NiII(LtBuODA)(OAc)] species is square planar, while [NiII(LtBuODA)2] 

has a neutral octahedral core with two deprotonated ligands. The five-coordinate 

[CuII(HLtBuODA)(LtBuODA)]ClO4·CH3OH complex has a monocationic core associated with 

one protonated ligand, whereas the dicationic [ZnII(HLtBuODA)2](ClO4)2 has a four-

coordinate core with protonated ligands. It was observed that Langmuir films of 

[NiII(LtBuODA)(OAc)] display approximately half of the average molecular area observed 

for [NiII (LtBuODA)2], [CuII (HLtBuODA) (LtBuODA)]ClO4· CH3OH, and 

[ZnII(HLtBuODA)2](ClO4)2 and that the flexibility and coordination number of the cores 

foster distinctive collapse mechanisms. Therefore, careful choice of the metal ion leads to 

control of surfactant-to-metal ratio, selection of coordination modes and structural 

properties, and the understanding of the protonation preferences of the ligands. This 

information will play an important role in the development of metal-containing 

responsive films.  
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The second Research Goal is detailed in Chapter 4, in which we have extended 

efforts toward developing redox-active homotetranuclear and heterodinuclear 

pentacoordinated M(III)M(II) amphiphiles of new topologies with the aim to control the 

magnetic behavior toward ground-state switching in heterospin metal/radical systems and 

to incorporate amphiphilic properties. A new modular [FeII(FeIIIL2)3](PF6)2 species was 

synthesized and characterized with discoid (disk-like) topology and found to exhibit 

redox and surfactant properties. These findings point to a new approach for developing 

redox-active multimetallic Langmuir film precursors. 

Chapter 5 describes the results towards the third Research Goal of achieving the 

integration of photo-responsive groups to the headgroups of metal-containing surfactants 

that serve as precursors for Langmuir–Blodgett films. A series of pyridine- and phenol-

based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types 

are reported: [(LPyI)RuII(bpy)2](PF6)2, [(LPyA)RuII(bpy)2](PF6)2, [(LPhBuI)RuII(bpy)2](PF6), 

and [(LPhClI)RuII(bpy)2](PF6). The pyridine-based species are obtained by treatment of 

[Ru(bpy)2Cl2] with the ligands LPyI (N-(pyridine-2-ylmethylene)octadecan-1-amine) and 

LPyA (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine phenol-based species are 

synthesized by reaction of [Ru(bpy)2(CF3SO3)2] with the amine ligands HLPhBuA (2,4-di-

tert- butyl- 6- ((octadecylamino) methyl) phenol), and HLPhClA (2,4- dichloro- 6-

((octadecylamino) methyl) phenol). All compounds are characterized by means of 

electrospray ionization (ESI+) mass spectrometry, elemental analyses, as well as 

electrochemical methods, infrared and UV−visible absorption and emission 

spectroscopies. The cyclic voltammograms (CVs) of the pyridine-based complexes are 

marked by two successive processes around −1.78 and −2.27 V versus Fc+/Fc attributed 
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to bipyridine reduction. A further ligand-centered reductive process is seen for 

[(LPyI)RuII(bpy)2](PF6)2. The RuII/RuIII couple appears at 0.93 V versus Fc+/Fc. The 

phenolato-containing [(LPhBuI)RuII(bpy)2](PF6) and [(LPhClI)RuII(bpy)2](PF6) species 

present relatively lower reduction potentials and more reversible redox behavior, along 

with RuII/III and phenolate/phenoxyl oxidations. The interpretation of observed redox 

behavior is supported by density functional theory (DFT) calculations. All complexes are 

surface-active as characterized by compression isotherms and Brewster angle 

microscopy. The pyridine-based complexes show collapse pressures of about 29−32 

mN·m−1, and are strong candidates for the formation of redox-responsive monolayer 

films. Our target was to extend the electrochemical redox behavior of these species with 

the presence of ligand moieties such as phenolates, while preserving the amphiphilic and 

photophysical character of these ruthenium(II)-containing metallosurfactants. We have 

addressed questions regarding electrochemical, optical, electronic, and amphiphilic 

properties using synthetic, spectrometric, spectroscopic, computational, and surface-

dedicated methods and attempted to correlate these properties to assess the viability of 

these species as precursors for photo-responsive LB films. 

The fourth Research Goal seeks to address the expansion of current redox-active 

moieties by exploiting ligands containing amino-catechols, as shown in Chapters 6 and 

7. Extensive attention has been focused on the design of redox-active ligands to enhance 

the reaction chemistry of coordination compounds with early transition metals to induce 

noble-transition-metal reactivity. Of these, one intriguing example that has left a 

substantial impact is the prevalently investigated N,N’-bis(3,5-di-tert-butyl-2-

hydroxyphenyl)-1,2-phenylenediamine ligand. We have isolated and characterized 



www.manaraa.com

163 
 

species between this ligand and manganese(II), iron(III), cobalt(II), and gallium(III). 

Stoichiometric reactions resulted in mono-ligated species for iron and gallium, and 

pseudo-octahedral bis-ligated species for manganese and cobalt. An unforeseen aerobic 

cyclization of the ligand occurs in the presence of cobalt(II) to form a new mixed 

phenolate/phenoxazinylate radical species. The peculiar electronic nature inherent to 

these redox-active transition metal complexes merely complicates the proper assignment 

and identification of the diverse redox states observed. Experimental and computational 

evidence merge to elucidate the multiple oxidation levels accessible to these systems. 

8.2. Perspectives 

 Although my contribution towards our group objectives have mainly focused on 

effectively adapting our previous systems to target enhanced electrochemical and 

spectroscopic responses, the next step that must be taken is to demonstrate ordered 

surface deposition onto solid surfaces to confirm that the observed solution-based 

response is in fact conserved. Towards this aim, members of our group have recently 

gained information regarding long chain orientation and headgroup arrangement of 

monolayers transferred onto gold with a variable angle reflection accessory that allows 

for infrared reflection-absorption spectroscopy (IRRAS). Nevertheless, the novel 

precursors described in Chapters 3–5 display efficient amphiphilic behavior to 

presumably function as well-organized thin films once transferred onto solid substrates. 

The methodology exploited in the design of the [FeII(FeIIIL2)3](PF6)2 species of discoid 

topology has certainly paved a foundation for assembling extended modular films 

containing heterometallic cores based on Robson macrocycles and Asato-like ligands, 

whereby controlling subphase parameters, such as counterion choice, compression rate, 
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subphase pH, and temperature, may perhaps play an important factor in optimizing film 

quality. 

The amino-catecholate chemistry of Chapters 6 and 7 was initiated by attempts 

to expand the electrochemical response of our currently used phenoxyl radical based 

systems by tailoring our phenanthroline ligand platforms to include a more air stable 

redox-active moiety. Synthetically adapting these frameworks proved to be significantly 

more challenging than projected as a result of insolubility and air sensitivity with the 

diamine precursor. As a starting point, the analogous N,N’-bis(3,5-di-tert-butyl-2-

hydroxyphenyl)-1,2-phenylenediamine ligand was investigated to familiarize ourselves 

with the particularly unique reaction conditions required. We ascertained that the 

impressive electrochemical response observed with both redox-active metal centers and 

the redox inert gallium(III) ion was derived from various ligand-centered oxidations. 

Specifically, the unexpected formation of the phenoxazinylate-type ligand in the presence 

of cobalt(II) ion is of paramount curiosity given the serendipitous observation of multiple 

accessible oxidation levels. The rich redox chemistry illustrated by this ligand motif 

evokes relevance towards potential catalytic avenues to be explored. Ligands with the 

capacity to store electrons can essentially eliminate the use of noble transition metals to 

mediate two-electron reductive elimination and oxidative addition catalytic processes, 

thus taking advantage of less expensive first-row transition metals to accomplish such 

transformations. Imperative targets to pursue involve determining the critical role of the 

cobalt(II) ion in the formation of the cyclized ligand, in addition to isolating the 

phenoxazinylate ligand for further incorporation with different metal ions and ligand 

scaffolds.   



www.manaraa.com

165 
 

APPENDIX A 

Supplementary Information for Chapter 3 

 

 Figure A.3.1. Selected MOs for 9. 
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Table A.3.1. Optimized Structures 
Cartesian Coordinates: 

(3’) Cu: E(UB+HF-LYP) = -3802.91151977 
H 0.27567400 -5.46607900 -1.05651100 
H -1.85909700 -6.35420700 -1.42554600 
H 0.07381400 -4.15478000 -2.22992000 
C -0.04623500 -4.42480600 -1.17834300 
H -2.29044600 -5.10780400 -2.60913100 
H 0.63088900 -3.79507600 -0.59789100 
H -1.12664400 -5.71737200 0.91781500 
C -2.31067200 -5.36251200 -1.54379900 
C -1.51609400 -4.31961300 -0.71440500 
H -3.35832600 -5.43967900 -1.23792700 
C -1.56359800 -4.72141500 0.78052600 
H -2.58531700 -4.75152600 1.17370500 
H -0.98782300 -4.01843700 1.39536000 
H 4.72249600 -4.29665100 1.47120900 
H 2.88359200 -0.77900300 -3.75790500 
C -2.19372200 -2.93146000 -0.89104000 
H 6.44546800 -4.58724100 1.19773600 
H 5.36038800 -4.31736800 -0.17980500 
O -0.24881900 -1.75854000 -1.67934400 
H -4.03308300 -3.73526900 -0.17261600 
C 5.57880500 -4.01272900 0.84979900 
H 2.75089100 0.87773900 -4.37189600 
C 2.68010600 0.25822600 -3.46924800 
H 5.34088900 -0.38817100 -3.35094500 
C -3.55595300 -2.84527900 -0.56885100 
C -1.58123100 -1.74749800 -1.37304500 
H 1.65573100 0.30161300 -3.09541600 
H 0.18054000 -0.89481900 -1.46848900 
H 5.34635900 -2.33431900 3.06306600 
H 5.11747800 1.25482000 -3.95650400 
C 5.09598900 0.63675100 -3.05198500 
H -0.80334600 0.27960400 -2.78773300 
H 7.05522900 -2.67111700 2.75843400 
H 5.59176200 -0.75935200 -1.20442900 
C 5.87270500 -2.49537100 0.92835200 
C -2.35268800 -0.58298400 -1.59997800 
C -4.35072700 -1.70506400 -0.74679900 
C 6.18545200 -2.11163900 2.39449900 
C 3.69771600 0.73866300 -2.40677100 
C 4.66245100 -0.85467100 -0.66287400 
H 0.23523200 -1.73062000 0.63207100 
C 4.64044800 -1.70916900 0.44536000 
C 3.56124500 -0.11814200 -1.12895800 
H -2.39438800 0.92132100 -3.12322400 
C 3.41508600 -1.83676200 1.10581400 
H 3.31872400 -2.51370000 1.95171000 
H 5.88828000 1.00253900 -2.38941000 
C -1.72961500 0.60011500 -2.31008900 
C -3.72089900 -0.58913000 -1.29763800 
C 2.34098400 -0.23569200 -0.40604200 
C 2.28807800 -1.13233000 0.68949400 
O 1.20169500 0.41316200 -0.77091000 
H 1.06083900 -2.12913200 2.14002300 
H 7.97377200 -2.77865600 0.46908200 
C 0.96488200 -1.36580200 1.35807200 
H 6.98744700 -2.49265600 -0.96743900 
H 6.41027800 -1.04226000 2.48151400 

C 7.12570600 -2.20442500 0.08064500 
H 3.50146800 2.83957400 -2.97648500 
H -4.30352900 0.29349200 -1.53477900 
C 3.46433800 2.22711300 -2.06655900 
H 0.33304300 2.02897500 -2.59856100 
H 2.49763800 2.37162600 -1.58659500 
H -1.52340400 -0.92544400 1.66228700 
H 7.40446700 -1.14478200 0.11181600 
N -1.38917700 1.78449400 -1.45394700 
H 4.24195300 2.59357000 -1.38561300 
N 0.38532000 -0.11788100 1.94554700 
Cu 0.08732500 1.32421100 0.48474400 
C -0.45772500 2.66293700 -2.18649400 
H -0.93314800 3.17456700 -3.03496300 
C -0.98356600 -0.37948500 2.44678300 
H -0.98440500 -1.01575500 3.33997600 
C 0.21300900 3.68538300 -1.29568000 
N 0.58990600 3.27183100 -0.06849700 
C -1.67091300 0.93217100 2.72152100 
N -1.28688400 1.94709400 1.91750200 
H 0.18026800 5.28225000 -2.73602300 
C 0.50686700 4.97320700 -1.74812600 
H -2.89929400 0.26022800 4.35284400 
C -2.61707400 1.10289500 3.72977200 
C 1.28535000 4.11209800 0.71920200 
C -1.80592200 3.16857700 2.13641900 
H -1.44041300 3.96554500 1.49980300 
H 1.56947300 3.72972300 1.69563200 
C 1.22847700 5.84008900 -0.93069700 
C 1.63201200 5.40063500 0.33034100 
C -3.17590900 2.36373100 3.92773500 
C -2.75097800 3.42144200 3.12403500 
H 1.47169300 6.84192900 -1.27176500 
H 2.19983300 6.03786900 0.99965000 
H -3.91483000 2.52179200 4.70743200 
H -3.13748000 4.42587300 3.25864900 
C -5.84332600 -1.73356300 -0.36812200 
C -6.54801000 -0.39792800 -0.67288200 
H -6.10075200 0.43726300 -0.12005400 
H -6.52123100 -0.15658500 -1.74162200 
H -7.60093000 -0.45994500 -0.37773200 
C -6.56576000 -2.84762900 -1.16247500 
H -6.14483300 -3.83714600 -0.95667100 
H -7.62893600 -2.87825300 -0.89628600 
H -6.49051900 -2.67099000 -2.24116400 
C -5.98028600 -2.01512600 1.14720700 
H -5.49300000 -1.22909200 1.73749100 
H -7.03696700 -2.04999200 1.43775200 
H -5.52764900 -2.97256400 1.42580500 
C -2.60373800 2.53581200 -1.03122100 
H -2.25641300 3.37807400 -0.42831300 
H -3.16868200 1.88152900 -0.36298600 
C -3.53479600 3.08549900 -2.12282200 
H -4.34075700 3.64849200 -1.63945200 
H -3.02718400 3.77343500 -2.80671400 
H -4.00390300 2.30062800 -2.72228200 
C 1.28478700 0.47514500 2.99157000 
H 2.22815300 0.69212800 2.48311000 
H 0.84576500 1.42942900 3.29669300 
C 1.55961700 -0.38015500 4.23110900 
H 2.22173300 0.18153300 4.89825600 
H 0.65210500 -0.61284900 4.79763600 
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H 2.06574900 -1.31699200 3.98456300 
 
(8) Cu: E(UB+HF-LYP) = -3645.68926619 
H -1.58296300 -5.81942400 -1.65412100 
H -3.11853100 -6.08061200 0.22702100 
H -2.71713600 -4.75072500 -2.49631600 
C -1.88503900 -4.77324700 -1.78324200 
H -4.32983900 -5.06511000 -0.55557100 
H -1.04469700 -4.22611700 -2.21532800 
H -0.90877200 -5.35144300 0.75752000 
C -3.46932600 -5.04863400 0.12217500 
C -2.31605800 -4.17792700 -0.41891900 
H -3.81312500 -4.71874200 1.10984100 
C -1.14525800 -4.29474500 0.58588300 
H -0.24458200 -3.80608800 0.21204300 
H -1.41461300 -3.85720500 1.55631900 
H 5.86075700 -4.05363300 0.56752400 
H 2.89332100 -1.73454200 -3.38350600 
C -2.74776000 -2.70614100 -0.62346900 
H 7.50466700 -3.60818000 1.06424400 
H 6.78044900 -2.86473800 -0.36711700 
O -0.56089300 -2.07688100 -1.37768300 
H -4.73845800 -3.02455700 0.06827600 
C 6.56800500 -3.22032400 0.64654200 
H 2.72762900 -0.26827000 -4.36297200 
C 2.65981700 -0.66470200 -3.34234900 
H 5.34782400 -1.16397200 -3.08253300 
C -4.06155000 -2.29613000 -0.35372000 
C -1.86235400 -1.73080300 -1.14928100 
H 1.62997900 -0.56068300 -2.99733800 
H 0.05022200 -1.30548000 -1.26079400 
H 5.10706600 -3.52178500 2.96269500 
H 5.05607800 0.28469800 -4.04899900 
C 5.05745300 -0.10913800 -3.02664400 
H -0.59963500 0.06305800 -2.66015900 
H 6.75881700 -3.03393100 3.35298700 
H 5.61512400 -0.98033600 -0.88048200 
C 6.00245800 -2.09651600 1.54764900 
C -2.34687900 -0.44969300 -1.49370200 
C -4.55947100 -1.01031700 -0.61455600 
C 5.80135400 -2.67355500 2.96186300 
C 3.65280100 0.07567900 -2.41481800 
C 4.67755300 -1.00209400 -0.34051500 
H 0.27910500 -1.83240900 1.06868600 
C 4.68963700 -1.56351900 0.94700500 
C 3.54718300 -0.47604800 -0.97683000 
H -2.06433300 0.94510300 -3.09434700 
C 3.46578700 -1.61717300 1.61111300 
H 3.38908100 -2.07222000 2.59381100 
H 5.83012800 0.43363400 -2.47087100 
C -1.49149800 0.53699700 -2.24952300 
C -3.67790900 -0.11410400 -1.21960900 
C 2.32001800 -0.50111600 -0.25076600 
C 2.30256900 -1.11536100 1.02179100 
O 1.15465300 -0.01315900 -0.75544300 
H 1.09792200 -1.85486000 2.63934200 
H 7.97640400 -1.31219100 2.06346000 
C 0.98063100 -1.28842000 1.70671300 
H 7.25744900 -0.51902800 0.65592100 
H 5.42400300 -1.91890500 3.66222000 
C 7.03384200 -0.94655300 1.63904100 
H 3.34744500 1.98952300 -3.42853600 

H -4.03440600 0.86878000 -1.52549100 
C 3.35370100 1.59088200 -2.40582900 
H 0.42965600 2.13083600 -2.80455700 
H 2.38781900 1.79033900 -1.94299300 
H -1.55582800 -0.85609900 2.03814100 
H 6.66488500 -0.13747300 2.28023600 
N -1.02896300 1.67485300 -1.39354300 
H 4.11909700 2.13415800 -1.83892200 
N 0.33488100 0.02749100 1.99866900 
Cu 0.05351100 1.14563600 0.31315800 
C -0.28604800 2.67964900 -2.18281100 
H -1.87190100 2.11666600 -1.02420300 
H -0.94869900 3.22837800 -2.86540000 
C -0.99169600 -0.12825100 2.63590400 
H -0.91545000 -0.52992000 3.65410000 
H 0.94769600 0.53235500 2.64376400 
C 0.48754200 3.64337700 -1.30543300 
N 0.88431300 3.18240500 -0.10400500 
C -1.71184900 1.19524300 2.62118900 
N -1.40720500 1.98801100 1.57426700 
H 0.47929900 5.26596900 -2.72448500 
C 0.82636700 4.92128300 -1.75504700 
H -2.85069800 0.91034800 4.42449600 
C -2.63848200 1.57342600 3.59179200 
C 1.65001600 3.97212200 0.66685300 
C -2.01073100 3.18552900 1.47683400 
H -1.71295800 3.80739100 0.63816200 
H 1.95120200 3.55892800 1.62582400 
C 1.62270700 5.73356900 -0.95044500 
C 2.04928700 5.24921800 0.28622400 
C -3.27608600 2.80649900 3.47288900 
C -2.95425400 3.63172500 2.39454500 
H 1.90478300 6.72794600 -1.28330900 
H 2.67364300 5.84498600 0.94343500 
H -4.00350100 3.12284800 4.21419600 
H -3.41567800 4.60532800 2.26962900 
C -6.01150800 -0.59319400 -0.31307200 
C -6.73079900 -0.22842700 -1.63386500 
H -6.23907600 0.60185800 -2.15281500 
H -6.75091000 -1.08406000 -2.31756300 
H -7.76647200 0.07174200 -1.43531300 
C -6.81395800 -1.71231600 0.37744600 
H -6.36284500 -2.01133100 1.33071600 
H -7.82966700 -1.36102700 0.58898100 
H -6.90200500 -2.60310200 -0.25399100 
C -6.00950400 0.64009200 0.62178200 
H -5.48531400 1.49169300 0.17295600 
H -7.03607600 0.95964900 0.83648500 
H -5.52075500 0.40848500 1.57597900 
 
(9) Zn: E(UB+HF-LYP) = -3784.54467471 
H 4.03808300 0.20875700 -4.54443400 
H 3.34282600 -2.24284000 -4.53166200 
H 5.16266000 -0.03011800 -3.19896600 
C 4.12015200 0.18830500 -3.45074000 
H 4.50426400 -2.57239500 -3.24695300 
H 3.89189500 1.19332600 -3.07476100 
C 3.47602100 -2.25648800 -3.44341100 
H 1.71886500 -0.56549600 -4.44853500 
C 3.14699000 -0.85924600 -2.85547200 
H 2.80715600 -3.01955600 -3.03005900 
C 1.73343800 -0.51294000 -3.35325000 
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H 1.44152200 0.49672300 -3.05753000 
H 5.29219600 -1.63791900 -1.60581900 
H -2.52918500 -4.86652000 -1.34780500 
H -2.07564500 1.00634700 -3.06600300 
H 0.98861800 -1.21859100 -2.97426800 
H -0.66209200 0.11899100 -2.49315800 
H -0.95477300 -4.14052400 -0.96968500 
C 3.32180000 -0.88601000 -1.31294700 
C 4.56525400 -1.34946100 -0.85451700 
C -1.84000700 -4.60759500 -0.53567700 
C -1.57576500 0.61392400 -2.16987600 
H -4.20101200 0.85330900 -2.03090700 
H -1.53309500 -5.54037400 -0.04746200 
C -3.88530500 -0.03364300 -1.48809100 
C -2.51000200 -0.32764500 -1.45910900 
H 0.25301600 2.29920900 -2.76488900 
O -0.74036200 -1.84316800 -0.77898200 
C -4.82923900 -0.85596700 -0.88179700 
H -1.21007700 3.27722800 -2.85528300 
C -2.05269300 -1.49237500 -0.81032400 
H -0.09252700 -1.09166400 -0.85513100 
H -4.44431500 -4.76867200 0.31784100 
C -4.33549500 -2.01347300 -0.24931000 
C -2.98754200 -2.37366000 -0.19636500 
C -0.50190300 2.81215200 -2.15678400 
C 4.94679200 -1.47025400 0.48618600 
C 2.38027300 -0.47139700 -0.32923500 
O 1.15929500 0.04093200 -0.63909800 
H -5.05511500 -2.67478900 0.21606000 
C -2.53481200 -3.68111000 0.49343800 
N -1.15141700 1.78284600 -1.31779500 
C -3.72416000 -4.46517000 1.08592500 
H -0.08769000 5.47054500 -2.74294900 
H -3.34982700 -5.37892200 1.55933800 
H -2.00413400 2.19228800 -0.93028600 
C 3.98942800 -1.09466500 1.42629600 
C 2.73629800 -0.61489500 1.03626200 
C 0.18860300 3.87152000 -1.32986900 
H -0.65463100 -2.88274800 1.30330800 
C 0.34382300 5.17942600 -1.79046700 
H -4.25886500 -3.89484900 1.85491300 
C -1.56543600 -3.36673200 1.66012700 
H -1.28224100 -4.29580100 2.16861800 
Zn 0.25985000 1.44577500 0.33658800 
H 4.19772100 -1.17991900 2.48859900 
H -2.86992400 0.80345000 0.76624200 
H 0.78597000 -0.73746600 1.96780600 
N 0.69809500 3.47219600 -0.14796100 
H -2.04688000 -2.71525000 2.40085500 
C 1.05918100 6.09217500 -1.01921700 
C 1.75274200 -0.24086100 2.10726900 
H 1.19362300 7.11387000 -1.36114400 
C -2.51007500 0.94497100 1.77843400 
H 2.13532900 -0.53860500 3.09219200 
N -1.20167700 1.23530300 1.92024300 
N 1.49776200 1.23875600 2.10238700 
C 1.38701700 4.35835700 0.59314100 
H 2.40931900 1.69327700 2.06063300 
C 1.59633700 5.67335100 0.19873200 
H -4.41364700 0.55085800 2.68208400 
C -3.37193800 0.79465900 2.85883000 
H 1.78354200 3.99119300 1.53408700 

H 2.16117700 6.34884800 0.83184700 
C -0.70751200 1.37091500 3.16808600 
C 0.76554300 1.70416900 3.28662700 
C -2.86102600 0.94131700 4.14695500 
H 1.16655800 1.27034400 4.21347500 
H 0.88294900 2.79302200 3.36625500 
C -1.50642900 1.22696700 4.30075200 
H -3.50041600 0.82262400 5.01651400 
H -1.06565400 1.33116200 5.28746500 
C -6.34249100 -0.57314300 -0.90830500 
C -6.67925400 0.72315800 -1.66938700 
H -7.76174300 0.88865800 -1.65779800 
H -6.20875300 1.60192600 -1.21146700 
H -6.36708000 0.67312400 -2.71877300 
C -6.87096300 -0.43143300 0.53911200 
H -7.95414400 -0.26269000 0.53768200 
H -6.67712400 -1.32883400 1.13598200 
H -6.40229200 0.42245100 1.04559200 
C -7.07697300 -1.74346900 -1.60553800 
H -6.72845900 -1.86502900 -2.63704200 
H -6.91972300 -2.69407600 -1.08575500 
H -8.15649500 -1.55408300 -1.63123400 
C 6.34402600 -1.99859900 0.85755300 
C 7.42652100 -1.07175300 0.25502900 
H 8.42802100 -1.44316200 0.50254700 
H 7.35542400 -1.01521600 -0.83643500 
H 7.33611700 -0.05283300 0.64947500 
C 6.55542700 -2.05352200 2.38247900 
H 6.47056400 -1.06202400 2.84313400 
H 5.83767300 -2.72277600 2.87090300 
H 7.55913400 -2.43257500 2.60310100 
C 6.52524200 -3.42862000 0.29536700 
H 6.43010500 -3.45384400 -0.79528900 
H 7.51885500 -3.81576200 0.55066400 
H 5.77673800 -4.11215100 0.711676 
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APPENDIX B 

Supplementary Information for Chapter 4 

Contents:  
1. Syntheses.  
2. ESI–MS exact mass spectrometry.  
3. X–ray structural determinations.  
4. Molecular mechanics calculations.  
5. Infrared spectroscopy.  
6. UV–visible spectroscopy.  
7. Electrochemistry.  
 

1. Syntheses.  

The ligand H3L1 (N,N,N’-tris-(3,5-di-tert-butyl-2-hydroxybenzyl)-[1,10]-phenanthroline-

5,6-diamine), [FeIIIL2]∙1/2MeCN (module), and [FeII(phen)3]2+(PF6)2 were synthesized 

according to procedures previously reported [see ref. 10 and Chakravarty et al, Inorg. 

Chem. 2007, 46, 11122]. The basic modular synthetic approach was followed for the 

synthesis of the tetrametallic iron cluster complex which was conducted under an argon 

atmosphere using Schlenk techniques.  

[FeII(FeIIIL2)3](PF6)2 (1). The module [FeIIIL2]·1/2MeCN (1.37 g : 1.5 mmol) and KPF6 

(0.18 g : 1.0 mmol) were dissolved in anhydrous methanol under an argon atmosphere. 

To the resulting solution was added anhydrous FeCl2 (0.06 g : 0.5 mmol) and the mixture 

was stirred at ambient temperature for 1 h. The suspension was stored at 4 oC for 3 d after 

which time a dark brown microcrystalline precipitate was isolated by filtration, washed 

with cold H2O and cold n-hexane, and vacuum dried. Yield: 0.96 g, 62%. UV–visible 

data (DCM, 5.0 × 10-6 M): 279 (249 690), 336 (95 900), 486 (50 260), 525 (51 750). MS 

data (ESI+ in MeOH): m/z = 1401.69970 ([FeII(FeIIIL1)3]+2/+2), 2948.36578 

([[FeII(FeIIIL1)3]+2 + PF6]+), and 916.49504 ([(FeIIIL1)3 + H+]). 
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2. ESI–MS exact mass spectrometry.  

The C171H213Fe4N12O9 full spectrum:  

  

   

C171H213Fe4N12O9, 2+ charge state, measured (top) and  
theoretical simulation (bottom), 0.107 ppm error:  
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3. X–ray structural determinations.  

   

 

Bond lengths [Å] and angles [o] for [GaIIIL2]  

           _____________________________________________________________  

            Ga(1)-O(3)                    1.828(3)  
            Ga(1)-O(1)                    1.828(3)  
            Ga(1)-O(2)                    1.899(3)  
            Ga(1)-N(4)                    1.975(4)  
            Ga(1)-N(1)                    2.266(4)  
            O(1)-C(1)                     1.368(5)  
            C(1)-C(6)                     1.387(6)  
            C(1)-C(2)                     1.417(6)  
            C(2)-C(3)                     1.399(6)  
            C(2)-C(7)                     1.526(6)  
            C(3)-C(4)                     1.386(7)  
            C(4)-C(5)                     1.375(7)  
            C(4)-C(11)                    1.546(7)  
            C(5)-C(6)                     1.389(6)  
            C(6)-C(15)                    1.509(6)  
            C(7)-C(8)                     1.521(7)  
            C(7)-C(9)                     1.531(6)  
            C(7)-C(10)                    1.553(7)  
            C(11)-C(13")                  1.395(19)  

            C(11)-C(12')                  1.451(17)  
            C(11)-C(14')                  1.451(17)  
            C(11)-C(12)                   1.470(13)  
            C(11)-C(13)                   1.486(18)  
            C(11)-C(12")                  1.61(3)  
            C(11)-C(13')                  1.67(2)  
            C(11)-C(14)                   1.685(15)  
            C(15)-N(1)                    1.502(6)  
            N(1)-C(16)                    1.460(5)  
            N(1)-C(43)                    1.497(5)  
            C(16)-C(27)                   1.356(6)  
            C(16)-C(17)                   1.450(6)  
            C(17)-C(18)                   1.399(6)  
            C(17)-C(21)                   1.423(6)  
            C(18)-C(19)                   1.359(6)  
            C(19)-C(20)                   1.393(7)  
            C(20)-N(2)                    1.306(6)  
            N(2)-C(21)                    1.355(6)  
            C(21)-C(22)                   1.458(7)  
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            C(22)-N(3)                    1.354(6)  
            C(22)-C(26)                   1.402(6)  
            N(3)-C(23)                    1.311(6)  
            C(23)-C(24)                   1.387(7)  
            C(24)-C(25)                   1.356(6)  
            C(25)-C(26)                   1.398(6)  
            C(26)-C(27)                   1.448(6)  
            C(27)-N(4)                    1.410(5)  
            N(4)-C(28)                    1.313(6)  
            C(28)-C(29)                   1.413(6)  
            C(29)-C(30)                   1.406(6)  
            C(29)-C(34)                   1.429(6)  
            C(30)-C(31)                   1.369(6)  
            C(31)-C(32)                   1.400(6)  
            C(31)-C(35)                   1.534(7)  
            C(32)-C(33)                   1.380(6)  
            C(33)-C(34)                   1.423(6)  
            C(33)-C(39)                   1.525(6)  
            C(34)-O(2)                    1.338(5)  
            C(35)-C(38)                   1.510(7)  
            C(35)-C(36)                   1.524(7)  
            C(35)-C(37)                   1.553(8)  
            C(39)-C(41)                   1.527(6)  
            C(39)-C(40)                   1.534(7)  
            C(39)-C(42)                   1.535(7)  
            C(43)-C(44)                   1.521(6)  
            C(44)-C(49)                   1.387(6)  
            C(44)-C(45)                   1.388(6)  
            C(45)-C(46)                   1.385(6)  
            C(46)-C(47)                   1.411(6)  
            C(46)-C(50)                   1.527(6)  
            C(47)-C(48)                   1.386(6)  
            C(48)-C(49)                   1.413(6)  
            C(48)-C(54)                   1.540(6)  
            C(49)-O(3)                    1.376(5)  
            C(50)-C(51)                   1.517(6)  
            C(50)-C(53)                   1.528(7)  
            C(50)-C(52)                   1.532(6)  
            C(54)-C(55)                   1.528(6)  
            C(54)-C(56)                   1.533(6)  
            C(54)-C(57)                   1.551(6)  
            C(58)-C(59)                   1.413(10)  
            C(59)-N(5)                    1.133(9)  
            C(60)-C(61)                   1.500(13)  
            C(61)-N(6)                    1.187(12)  
   
            O(3)-Ga(1)-O(1)             117.41(14)  
            O(3)-Ga(1)-O(2)              93.15(13)  
            O(1)-Ga(1)-O(2)              99.15(13)  
            O(3)-Ga(1)-N(4)             123.97(15)  
            O(1)-Ga(1)-N(4)             117.51(15)  
            O(2)-Ga(1)-N(4)              88.57(14)  
            O(3)-Ga(1)-N(1)              91.37(13)  
            O(1)-Ga(1)-N(1)              91.78(13)  
            O(2)-Ga(1)-N(1)             164.61(13)  
            N(4)-Ga(1)-N(1)              76.73(14)  
            C(1)-O(1)-Ga(1)             124.4(3)  
            O(1)-C(1)-C(6)              119.8(4)  
            O(1)-C(1)-C(2)              120.8(4)  
            C(6)-C(1)-C(2)              119.5(4)  
            C(3)-C(2)-C(1)              116.8(4)  
            C(3)-C(2)-C(7)              121.8(4)  
            C(1)-C(2)-C(7)              121.3(4)  

            C(4)-C(3)-C(2)              124.2(4)  
            C(5)-C(4)-C(3)              117.0(4)  
            C(5)-C(4)-C(11)             121.6(5)  
            C(3)-C(4)-C(11)             121.3(4)  
            C(4)-C(5)-C(6)              121.6(4)  
            C(1)-C(6)-C(5)              120.7(4)  
            C(1)-C(6)-C(15)             118.8(4)  
            C(5)-C(6)-C(15)             120.4(4)  
            C(8)-C(7)-C(2)              109.8(4)  
            C(8)-C(7)-C(9)              110.3(4)  
            C(2)-C(7)-C(9)              109.9(4)  
            C(8)-C(7)-C(10)             107.5(4)  
            C(2)-C(7)-C(10)             112.2(4)  
            C(9)-C(7)-C(10)             107.0(4)  
            C(13")-C(11)-C(12')         126.0(12)  
            C(13")-C(11)-C(14')          44.8(9)  
            C(12')-C(11)-C(14')          95.8(11)  
            C(13")-C(11)-C(12)          128.0(10)  
            C(12')-C(11)-C(12)           31.2(7)  
            C(14')-C(11)-C(12)          119.6(10)  
            C(13")-C(11)-C(13)           32.2(9)  
            C(12')-C(11)-C(13)          135.6(11)  
            C(14')-C(11)-C(13)           77.0(10)  
            C(12)-C(11)-C(13)           117.1(10)  
            C(13")-C(11)-C(4)           116.0(9)  
            C(12')-C(11)-C(4)           114.1(8)  
            C(14')-C(11)-C(4)           114.6(8)  
            C(12)-C(11)-C(4)            114.4(6)  
            C(13)-C(11)-C(4)            108.5(8)  
            C(13")-C(11)-C(12")         110.0(16)  
            C(12')-C(11)-C(12")          66.4(13)  
            C(14')-C(11)-C(12")         132.9(14)  
            C(12)-C(11)-C(12")           35.6(12)  
            C(13)-C(11)-C(12")           86.4(15)  
            C(4)-C(11)-C(12")           112.5(12)  
            C(13")-C(11)-C(13')          70.0(11)  
            C(12')-C(11)-C(13')         115.5(11)  
            C(14')-C(11)-C(13')         113.3(11)  
            C(12)-C(11)-C(13')           86.4(10)  
            C(13)-C(11)-C(13')           38.9(9)  
            C(4)-C(11)-C(13')           103.9(8)  
            C(12")-C(11)-C(13')          51.3(13)  
            C(13")-C(11)-C(14)           85.1(11)  
            C(12')-C(11)-C(14)           64.3(9)  
            C(14')-C(11)-C(14)           40.3(8)  
            C(12)-C(11)-C(14)            94.9(8)  
            C(13)-C(11)-C(14)           117.1(10)  
            C(4)-C(11)-C(14)            104.0(7)  
            C(12")-C(11)-C(14)          127.1(14)  
            C(13')-C(11)-C(14)          148.7(9)  
            N(1)-C(15)-C(6)             109.8(4)  
            C(16)-N(1)-C(43)            111.2(3)  
            C(16)-N(1)-C(15)            114.3(3)  
            C(43)-N(1)-C(15)            113.1(3)  
            C(16)-N(1)-Ga(1)            107.4(3)  
            C(43)-N(1)-Ga(1)            105.6(3)  
            C(15)-N(1)-Ga(1)            104.5(3)  
            C(27)-C(16)-C(17)           120.6(4)  
            C(27)-C(16)-N(1)            115.3(4)  
            C(17)-C(16)-N(1)            124.0(4)  
            C(18)-C(17)-C(21)           116.7(4)  
            C(18)-C(17)-C(16)           124.7(4)  
            C(21)-C(17)-C(16)           118.3(4)  



www.manaraa.com

173 
 

 

            C(19)-C(18)-C(17)           119.9(5)  
            C(18)-C(19)-C(20)           118.8(5)  
            N(2)-C(20)-C(19)            124.3(5)  
            C(20)-N(2)-C(21)            117.5(4)  
            N(2)-C(21)-C(17)            122.7(5)  
            N(2)-C(21)-C(22)            117.1(4)  
            C(17)-C(21)-C(22)           120.1(4)  
            N(3)-C(22)-C(26)            122.8(5)  
            N(3)-C(22)-C(21)            118.3(4)  
            C(26)-C(22)-C(21)           119.0(4)  
            C(23)-N(3)-C(22)            117.3(4)  
            N(3)-C(23)-C(24)            124.4(5)  
            C(25)-C(24)-C(23)           118.1(5)  
            C(24)-C(25)-C(26)           120.3(5)  
            C(25)-C(26)-C(22)           116.9(4)  
            C(25)-C(26)-C(27)           123.6(4)  
            C(22)-C(26)-C(27)           119.3(4)  
            C(16)-C(27)-N(4)            117.7(4)  
            C(16)-C(27)-C(26)           121.0(4)  
            N(4)-C(27)-C(26)            121.2(4)  
            C(28)-N(4)-C(27)            119.7(4)  
            C(28)-N(4)-Ga(1)            121.6(3)  
            C(27)-N(4)-Ga(1)            116.3(3)  
            N(4)-C(28)-C(29)            125.9(4)  
            C(30)-C(29)-C(28)           117.5(4)  
            C(30)-C(29)-C(34)           120.4(4)  
            C(28)-C(29)-C(34)           122.0(4)  
            C(31)-C(30)-C(29)           122.1(4)  
            C(30)-C(31)-C(32)           116.0(4)  
            C(30)-C(31)-C(35)           124.8(4)  
            C(32)-C(31)-C(35)           119.3(4)  
            C(33)-C(32)-C(31)           125.9(4)  
            C(32)-C(33)-C(34)           117.3(4)  
            C(32)-C(33)-C(39)           121.6(4)  
            C(34)-C(33)-C(39)           121.1(4)  
            O(2)-C(34)-C(33)            120.9(4)  
            O(2)-C(34)-C(29)            121.1(4)  
            C(33)-C(34)-C(29)           118.0(4)  
            C(34)-O(2)-Ga(1)            127.2(3)  
            C(38)-C(35)-C(36)           109.2(5)  
            C(38)-C(35)-C(31)           110.2(4)  

            C(36)-C(35)-C(31)           113.4(4)  
            C(38)-C(35)-C(37)           107.9(5)  
            C(36)-C(35)-C(37)           107.1(5)  
            C(31)-C(35)-C(37)           108.9(5)  
            C(33)-C(39)-C(41)           113.3(4)  
            C(33)-C(39)-C(40)           111.0(4)  
            C(41)-C(39)-C(40)           105.6(4)  
            C(33)-C(39)-C(42)           109.7(4)  
            C(41)-C(39)-C(42)           107.8(4)  
            C(40)-C(39)-C(42)           109.3(4)  
            N(1)-C(43)-C(44)            111.7(4)  
            C(49)-C(44)-C(45)           121.2(4)  
            C(49)-C(44)-C(43)           119.2(4)  
            C(45)-C(44)-C(43)           119.6(4)  
            C(46)-C(45)-C(44)           121.5(4)  
            C(45)-C(46)-C(47)           115.8(4)  
            C(45)-C(46)-C(50)           123.3(4)  
            C(47)-C(46)-C(50)           120.9(4)  
            C(48)-C(47)-C(46)           124.7(4)  
            C(47)-C(48)-C(49)           117.0(4)  
            C(47)-C(48)-C(54)           120.2(4)  
            C(49)-C(48)-C(54)           122.8(4)  
            O(3)-C(49)-C(44)            120.1(4)  
            O(3)-C(49)-C(48)            120.3(4)  
            C(44)-C(49)-C(48)           119.5(4)  
            C(49)-O(3)-Ga(1)            127.1(3)  
            C(51)-C(50)-C(46)           112.6(4)  
            C(51)-C(50)-C(53)           108.4(4)  
            C(46)-C(50)-C(53)           108.9(4)  
            C(51)-C(50)-C(52)           107.3(4)  
            C(46)-C(50)-C(52)           110.4(4)  
            C(53)-C(50)-C(52)           109.1(4)  
            C(55)-C(54)-C(56)           107.6(4)  
            C(55)-C(54)-C(48)           110.5(4)  
            C(56)-C(54)-C(48)           112.9(4)  
            C(55)-C(54)-C(57)           109.6(4)  
            C(56)-C(54)-C(57)           107.4(4)  
            C(48)-C(54)-C(57)           108.7(4)  
            N(5)-C(59)-C(58)            176.7(10)  
            N(6)-C(61)-C(60)            173.5(12)  

 
 
 

4. Molecular mechanics calculations.  

Full citation for reference 17: M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. 

Scuseria,M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. 

Burant, J.M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. 

Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. 

Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, 

X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. 
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Isomer A: 2.01215115 a.u.  
C 9.08610000 7.44060000 -4.14230000  
C 7.29120000 8.36370000 -5.65470000  
C 7.51140000 5.90220000 -5.31650000  
C 7.62310000 7.27540000 -4.60970000  
C 6.67380000 7.41690000 -3.39800000  
C 6.66350000 8.61540000 -2.65690000  
C 6.87260000 11.16720000 -1.26570000  
C 5.80740000 6.38790000 -2.99140000  
C 5.80380000 8.82060000 -1.54890000  
C 5.74670000 10.19350000 -0.82670000  
C 5.88420000 10.02270000 0.70820000  
C 4.95990000 6.55040000 -1.89160000  
C 4.92720000 7.75980000 -1.18700000  
C 4.40480000 10.86670000 -1.17120000  
C 4.12740000 5.39560000 -1.40650000  
C 2.48090000 1.43740000 -3.09340000  
C 2.57400000 2.75780000 -2.65840000  
C 2.15890000 6.01580000 -2.81120000  
C 1.68060000 0.53490000 -2.40490000  
C 1.87080000 3.19390000 -1.51070000  
C 0.68380000 6.34430000 -2.75820000  
C 1.94930000 4.51330000 -0.92450000  
C 2.27000000 11.42320000 1.52840000  
C -0.28660000 5.43060000 -3.17610000  
C 1.04140000 2.22520000 -0.87870000  
C 0.30280000 7.52980000 -2.12930000  
C 1.27980000 4.74030000 0.27210000  
C 5.41260000 8.88840000 6.22920000  
C -1.65730000 5.71290000 -3.01680000  
C 2.17650000 8.36560000 2.38130000  
C 2.01420000 5.89590000 2.21390000  
C 2.48000000 7.10280000 2.90910000  
C 1.63350000 10.87130000 2.81620000  
C 2.28640000 9.51770000 3.21170000  
C -0.42080000 10.37170000 -1.43650000  
C -1.05370000 7.94850000 -2.14390000  
C 3.09120000 6.97940000 4.15740000  
C 1.79040000 11.97150000 3.89860000  
C 0.29420000 2.52980000 0.17090000  
C 2.95810000 9.36720000 4.45090000  
C 3.39420000 8.11480000 4.92910000  
C -2.01550000 6.99640000 -2.55050000  
C 0.35280000 3.80140000 0.76830000  
C 4.13080000 8.02750000 6.28450000  
C 4.55570000 6.58550000 6.65570000  
C 0.11530000 10.66960000 2.60890000  
C -1.55040000 9.34140000 -1.67250000  
C -2.33370000 9.17680000 -0.35360000  
C -0.53300000 4.08300000 1.81840000  
C 3.20980000 8.54820000 7.40960000  
C -2.48140000 9.95680000 -2.74820000  
C -1.39840000 1.83450000 1.66710000  
C -1.42250000 3.10150000 2.25490000  
H 9.79000000 7.29210000 -4.98980000  
H 7.92800000 8.25000000 -6.55880000  
H 8.20600000 5.84650000 -6.18290000  
H 9.27480000 8.45390000 -3.73100000  
H 9.32580000 6.69410000 -3.35430000  
H 7.46550000 9.38450000 -5.25570000  
H 7.78020000 5.07600000 -4.62310000  
H 6.22660000 8.28790000 -5.96560000  
H 6.48270000 5.73860000 -5.70470000  
H 7.33260000 9.39420000 -2.97500000  
H 7.87320000 10.71720000 -1.08640000  
H 6.77580000 11.44450000 -2.33760000  
H 6.82170000 12.11850000 -0.69240000  
H 5.78540000 5.44050000 -3.50830000  
H 6.72980000 9.34260000 0.94740000  
H 6.07620000 10.99820000 1.20530000  
H 4.34050000 11.06440000 -2.26320000  
H 4.40870000 4.48680000 -1.95720000  
H 4.96370000 9.63230000 1.18190000  
H 3.03860000 1.11090000 -3.96200000  
H 4.29790000 11.83470000 -0.63640000  
H 3.22180000 3.38060000 -3.24150000  
H 4.43020000 5.17950000 -0.35580000  
H 2.69500000 6.90290000 -3.21550000  
H 2.33670000 5.22830000 -3.55790000  
H 3.55060000 10.21580000 -0.90660000  
H 1.63300000 -0.48010000 -2.76300000  
H 3.37130000 11.49690000 1.64810000  
H 0.03850000 4.46650000 -3.54050000  
H 2.04240000 10.78890000 0.65740000  
H 1.87770000 12.43630000 1.29280000  
H 6.06570000 8.55470000 5.39380000  
H 0.16690000 10.12010000 -0.53540000  
H 5.18020000 9.96340000 6.08120000  
H 2.86090000 12.22750000 4.05550000  
H 0.24730000 10.43840000 -2.32220000  
H 5.98690000 8.80310000 7.17720000  
H 1.92870000 4.97690000 2.78430000  
H 5.22660000 6.15860000 5.87900000  
H 1.27350000 12.90690000 3.59120000  
H 3.31710000 5.98370000 4.50990000  
H 3.14150000 10.22350000 5.07510000  
H -0.10460000 9.94170000 1.80710000  
H -0.83690000 11.38560000 -1.24970000  
H -0.37700000 11.62630000 2.32890000  
H -1.69900000 8.67910000 0.41080000  
H 5.10950000 6.57300000 7.61970000  
H -3.05440000 7.25310000 -2.44850000  
H 1.33970000 11.64990000 4.86270000  
H 3.66780000 5.92830000 6.77810000  
H -1.95950000 10.00200000 -3.72860000  
H -0.35450000 10.29500000 3.54400000  
H -0.56700000 5.06190000 2.27860000  
H 2.96140000 9.62130000 7.27420000  
H -2.65280000 10.16530000 0.04250000  
H 3.70210000 8.44510000 8.40100000  
H -3.24530000 8.55960000 -0.49780000  
H -2.78740000 10.98850000 -2.46890000  

H -3.41940000 9.37990000 -2.87650000  
H 2.26050000 7.97030000 7.42930000  
H -2.07730000 1.09050000 2.04760000  
H -2.11840000 3.31610000 3.05550000  
N 2.66940000 5.67290000 -1.45670000  
N 0.95120000 0.94830000 -1.33030000  
N 1.64990000 5.92580000 0.96500000  
N -0.51770000 1.55860000 0.65660000  
O 4.08980000 7.86980000 -0.07030000  
O 1.28380000 8.24450000 -1.45030000  
O 1.67830000 8.45980000 1.07150000  
Ga 2.32540000 7.25140000 -0.23680000  
C -2.70040000 4.59560000 -3.22330000  
C -2.53500000 3.57600000 -2.07940000  
H -3.31370000 2.78750000 -2.13600000  
H -1.53580000 3.09550000 -2.11890000  
H -2.63160000 4.07920000 -1.09260000  
C -2.48360000 3.89740000 -4.58590000  
H -2.45700000 4.64910000 -5.40390000  
H -1.54060000 3.31330000 -4.60850000  
H -3.30670000 3.18250000 -4.80020000  
C -4.16280000 5.10620000 -3.19470000  
H -4.87490000 4.27980000 -3.41070000  
H -4.43180000 5.50320000 -2.19210000  
H -4.31720000 5.89680000 -3.96060000  
Ga -0.18960000 -0.18070000 -0.20070000  
C 11.50750000 -2.09340000 4.10880000  
C 10.24340000 -3.42210000 5.84030000  
C 9.37930000 -1.21310000 5.06870000  
C 10.10370000 -2.50170000 4.60740000  
C 9.35430000 -3.25410000 3.48410000  
C 9.89240000 -4.44870000 2.96640000  
C 11.23770000 -6.86250000 2.04970000  
C 8.14390000 -2.79170000 2.94050000  
C 9.24810000 -5.19890000 1.95140000  
C 9.84790000 -6.53770000 1.44110000  
C 10.04030000 -6.49660000 -0.09540000  
C 7.48830000 -3.49970000 1.92840000  
C 8.00630000 -4.71230000 1.45470000  
C 8.90710000 -7.69530000 1.83500000  
C 6.23830000 -2.93530000 1.31290000  
C 2.73620000 -0.25300000 2.89350000  
C 3.51760000 -1.33370000 2.48800000  
C 4.82800000 -4.29180000 2.84430000  
C 1.61440000 0.10850000 2.15560000  
C 3.16860000 -2.08660000 1.34620000  
C 3.57440000 -5.12200000 2.94620000  
C 3.91160000 -3.20690000 0.82990000  
C 7.41940000 -9.29590000 -0.94060000  
C 2.50210000 -4.70780000 3.73950000  
C 2.01230000 -1.65940000 0.63520000  
C 3.50820000 -6.32220000 2.23100000  
C 3.54310000 -3.72050000 -0.41340000  
C 9.68610000 -5.94020000 -5.66230000  
C 1.34950000 -5.50620000 3.86800000  
C 6.13800000 -6.65690000 -2.13640000  
C 4.93060000 -4.48410000 -2.20780000  
C 5.93280000 -5.41350000 -2.75460000  
C 6.77850000 -9.16380000 -2.33650000  
C 6.82440000 -7.68920000 -2.83070000  
C 3.45130000 -9.41320000 1.78290000  
C 2.37080000 -7.16460000 2.33540000  
C 6.56650000 -5.10880000 -3.95980000  
C 7.53180000 -10.14450000 -3.27260000  
C 1.60050000 -2.27860000 -0.46210000  
C 7.49550000 -7.33430000 -4.02740000  
C 7.40360000 -6.04530000 -4.59380000  
C 1.31740000 -6.73640000 3.17870000  
C 2.33320000 -3.33830000 -1.02450000  
C 8.17380000 -5.72580000 -5.89460000  
C 7.98010000 -4.26660000 -6.37500000  
C 5.30980000 -9.64300000 -2.27590000  
C 2.25730000 -8.46900000 1.49670000  
C 2.22130000 -8.10700000 -0.00390000  
C 1.81140000 -3.97790000 -2.15890000  
C 7.68980000 -6.65890000 -7.02610000  
C 0.96730000 -9.27690000 1.79560000  
C -0.07110000 -2.46760000 -2.12380000  
C 0.60650000 -3.54060000 -2.70660000  
H 12.04590000 -1.50590000 4.88400000  
H 10.73490000 -2.88470000 6.68030000  
H 9.94820000 -0.70960000 5.88060000  
H 12.13370000 -2.97850000 3.87230000  
H 11.42500000 -1.46960000 3.19250000  
H 10.85950000 -4.31790000 5.61760000  
H 9.28680000 -0.48830000 4.23110000  
H 9.24230000 -3.76340000 6.18220000  
H 8.36860000 -1.44770000 5.46760000  
H 10.82460000 -4.78690000 3.38160000  
H 11.97140000 -6.06250000 1.80950000  
H 11.17540000 -6.99150000 3.15200000  
H 11.63720000 -7.81580000 1.63960000  
H 7.69540000 -1.87190000 3.28350000  
H 10.60570000 -5.58560000 -0.38750000  
H 10.60950000 -7.38380000 -0.44820000  
H 8.81870000 -7.75990000 2.94110000  
H 6.02550000 -1.93760000 1.73830000  
H 9.08520000 -6.50950000 -0.65230000  
H 3.01410000 0.31970000 3.76920000  
H 9.29630000 -8.66640000 1.45960000  
H 4.40180000 -1.50720000 3.06610000  
H 6.44850000 -2.74220000 0.23570000  
H 5.66850000 -4.92740000 3.20220000  
H 4.81450000 -3.45970000 3.56460000  
H 7.88790000 -7.55550000 1.43180000  
H 1.03440000 0.95270000 2.49020000  
H 8.43570000 -8.85140000 -0.94270000  
H 2.59350000 -3.76440000 4.25620000  
H 6.80720000 -8.81350000 -0.15690000  
H 7.51210000 -10.36380000 -0.64610000  
H 10.04040000 -5.30840000 -4.81910000  
H 4.39520000 -9.06100000 1.32410000  

H 9.92010000 -6.99900000 -5.42600000  
H 8.61510000 -9.89880000 -3.31700000  
H 3.60270000 -9.52340000 2.87830000  
H 10.26750000 -5.66920000 -6.57030000  
H 4.53010000 -3.71230000 -2.85630000  
H 8.31850000 -3.54640000 -5.59880000  
H 7.44920000 -11.19010000 -2.90320000  
H 6.38660000 -4.13400000 -4.38870000  
H 8.09220000 -8.06120000 -4.54910000  
H 4.72100000 -9.08810000 -1.52060000  
H 3.27180000 -10.42370000 1.35570000  
H 5.25500000 -10.71840000 -1.99950000  
H 3.13420000 -7.57220000 -0.32270000  
H 8.57450000 -4.07150000 -7.29410000  
H 0.44450000 -7.35060000 3.30600000  
H 7.10250000 -10.12540000 -4.29800000  
H 6.91510000 -4.06780000 -6.62350000  
H 0.92850000 -9.57750000 2.86510000  
H 4.81950000 -9.51120000 -3.26460000  
H 2.30760000 -4.82820000 -2.60730000  
H 7.91020000 -7.72370000 -6.80360000  
H 2.13400000 -9.02210000 -0.62900000  
H 8.19450000 -6.41010000 -7.98480000  
H 1.35230000 -7.44860000 -0.22200000  
H 0.93010000 -10.20640000 1.18640000  
H 0.05770000 -8.69140000 1.53940000  
H 6.59290000 -6.55270000 -7.17090000  
H -1.00030000 -2.15300000 -2.56630000  
H 0.20410000 -4.02550000 -3.58510000  
N 5.07800000 -3.84810000 1.44460000  
N 1.27000000 -0.59930000 1.04220000  
N 4.47060000 -4.62270000 -0.99930000  
N 0.45850000 -1.82840000 -1.03790000  
O 7.33720000 -5.40070000 0.43460000  
O 4.62140000 -6.72640000 1.49450000  
O 5.57920000 -6.90110000 -0.87600000  
Ga 5.45780000 -5.48950000 0.36500000  
C 0.13960000 -5.09070000 4.73280000  
C -1.14210000 -5.09490000 3.86840000  
H -2.01140000 -4.71620000 4.44780000  
H -1.00290000 -4.45470000 2.97130000  
H -1.40940000 -6.11530000 3.52520000  
C 0.28690000 -3.67600000 5.34420000  
H 1.15070000 -3.63210000 6.04210000  
H 0.42090000 -2.91350000 4.54780000  
H -0.62000000 -3.40000000 5.92500000  
C -0.02570000 -6.09200000 5.89550000  
H -0.87240000 -5.79580000 6.55230000  
H -0.23280000 -7.11760000 5.52450000  
H 0.89940000 -6.12530000 6.51090000  
C -11.35700000 3.08860000 -4.94060000  
C -11.06480000 0.92270000 -6.19950000  
C -9.13730000 2.47800000 -5.90270000  
C -10.39990000 1.90680000 -5.21160000  
C -10.09150000 1.17620000 -3.88470000  
C -11.14330000 0.60100000 -3.14470000  
C -13.49560000 -0.45800000 -1.79530000  
C -8.78970000 1.06290000 -3.36840000  
C -10.92910000 -0.09720000 -1.93010000  
C -12.10910000 -0.75880000 -1.16710000  
C -12.16820000 -0.24550000 0.29320000  
C -8.54410000 0.39260000 -2.16610000  
C -9.59050000 -0.21700000 -1.46150000  
C -11.93120000 -2.29110000 -1.19230000  
C -7.15230000 0.36570000 -1.59990000  
C -2.86380000 0.39740000 -3.46180000  
C -4.06650000 -0.00480000 -2.88330000  
C -6.73540000 -1.85750000 -2.62790000  
C -1.69300000 0.37950000 -2.71180000  
C -4.10150000 -0.49340000 -1.55910000  
C -6.09550000 -3.20510000 -2.41770000  
C -5.28440000 -0.92880000 -0.86230000  
C -11.34800000 -3.68170000 2.00250000  
C -5.00470000 -3.61010000 -3.18980000  
C -2.86220000 -0.51680000 -0.86110000  
C -6.62010000 -4.04540000 -1.43060000  
C -5.17050000 -1.23230000 0.49510000  
C -11.28580000 1.40760000 5.57910000  
C -4.43360000 -4.88540000 -3.01770000  
C -8.82010000 -1.88130000 2.63940000  
C -6.65690000 -0.70340000 2.29470000  
C -7.96600000 -0.81430000 2.95900000  
C -10.65850000 -3.55850000 3.37590000  
C -9.90520000 -2.20270000 3.49870000  
C -8.13860000 -6.50550000 -0.24860000  
C -6.08390000 -5.34350000 -1.22620000  
C -8.28430000 0.06060000 3.99840000  
C -11.76060000 -3.74340000 4.45140000  
C -2.76770000 -0.98480000 0.37640000  
C -10.22950000 -1.26950000 4.51480000  
C -9.45120000 -0.11940000 4.76360000  
C -5.00220000 -5.73930000 -2.04940000  
C -3.90710000 -1.37080000 1.10230000  
C -9.87250000 0.86120000 5.88080000  
C -8.92330000 2.07730000 6.01450000  
C -9.65830000 -4.72360000 3.55600000  
C -6.61690000 -6.26330000 -0.09150000  
C -6.32760000 -5.60510000 1.27500000  
C -3.72800000 -1.87990000 2.39780000  
C -9.88450000 0.12570000 7.23880000  
C -5.94220000 -7.65990000 -0.07010000  
C -1.34670000 -1.54170000 2.18510000  
C -2.44480000 -1.96300000 2.93830000  
H -11.55230000 3.65980000 -5.87410000  
H -11.25030000 1.41280000 -7.17990000  
H -9.40460000 2.98740000 -6.85420000  
H -12.33830000 2.74320000 -4.55430000  
H -10.91230000 3.78140000 -4.19380000  
H -12.04340000 0.55950000 -5.82280000  
H -8.63560000 3.22920000 -5.25500000  
H -10.40740000 0.04230000 -6.36800000  
H -8.41960000 1.66630000 -6.15100000  
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H -12.13640000 0.70310000 -3.54360000  
H -13.69190000 0.63610000 -1.81530000  
H -13.56940000 -0.86820000 -2.82580000  
H -14.30980000 -0.93230000 -1.20480000  
H -7.94770000 1.50190000 -3.88160000  
H -12.15990000 0.86560000 0.31050000  
H -13.09600000 -0.59140000 0.79850000  
H -11.94980000 -2.66340000 -2.23950000  
H -6.47460000 0.96530000 -2.23570000  
H -11.33090000 -0.61160000 0.91550000  
H -2.84620000 0.75950000 -4.48130000  
H -12.74760000 -2.79340000 -0.62980000  
H -4.93700000 0.12830000 -3.49100000  
H -7.17340000 0.90380000 -0.62430000  
H -7.80150000 -2.04110000 -2.88930000  
H -6.33890000 -1.36320000 -3.52710000  
H -10.96780000 -2.60310000 -0.75010000  
H -0.78540000 0.72660000 -3.17440000  
H -11.98390000 -2.79290000 1.81270000  
H -4.62420000 -2.91740000 -3.92510000  
H -10.61700000 -3.79480000 1.18120000  
H -11.99730000 -4.58320000 1.96410000  
H -11.30440000 1.90030000 4.58280000  
H -8.74360000 -5.61920000 0.02350000  
H -12.04820000 0.60110000 5.58270000  
H -12.55430000 -2.97260000 4.34390000  
H -8.37750000 -6.79700000 -1.29400000  
H -11.59230000 2.15400000 6.34380000  
H -5.88150000 -0.11400000 2.77200000  
H -8.87890000 2.65090000 5.06330000  
H -12.25310000 -4.73530000 4.35030000  
H -7.60160000 0.87370000 4.19650000  
H -11.08850000 -1.42940000 5.14200000  
H -8.90840000 -4.75910000 2.74260000  
H -8.48430000 -7.31980000 0.42470000  
H -10.18510000 -5.70260000 3.55010000  
H -6.81990000 -4.62060000 1.37270000  
H -9.27980000 2.77090000 6.80700000  
H -4.57370000 -6.71950000 -1.94360000  
H -11.33000000 -3.69530000 5.47530000  
H -7.89880000 1.75280000 6.29790000  
H -6.11430000 -8.19640000 -1.02840000  
H -9.11860000 -4.62340000 4.52240000  
H -4.56430000 -2.23280000 2.98640000  
H -10.63750000 -0.68930000 7.25850000  
H -6.69250000 -6.24570000 2.10700000  
H -10.13450000 0.82700000 8.06440000  
H -5.23460000 -5.44910000 1.40520000  
H -6.35960000 -8.29070000 0.74500000  
H -4.85000000 -7.57600000 0.11950000  
H -8.88620000 -0.31670000 7.44660000  
H -0.36730000 -1.60350000 2.62800000  
H -2.30300000 -2.33890000 3.94230000  
N -6.64400000 -1.01260000 -1.40460000  
N -1.71210000 -0.07130000 -1.42610000  
N -6.39880000 -1.35350000 1.19820000  
N -1.53090000 -1.03370000 0.93080000  
O -9.32330000 -0.87440000 -0.25340000  
O -7.74410000 -3.62410000 -0.72020000  
O -8.53740000 -2.68170000 1.52600000  
Ga -7.76160000 -1.89570000 0.00050000  
C -3.22600000 -5.37650000 -3.84530000  
C -2.08380000 -5.80080000 -2.89360000  
H -1.17120000 -6.07270000 -3.46640000  
H -1.83550000 -4.97170000 -2.19730000  
H -2.35640000 -6.68920000 -2.28770000  
C -2.66380000 -4.29520000 -4.80000000  
H -3.42070000 -4.00280000 -5.55950000  
H -2.34700000 -3.39380000 -4.23350000  
H -1.77590000 -4.67640000 -5.34990000  
C -3.65160000 -6.58670000 -4.70360000  
H -2.80640000 -6.93840000 -5.33430000  
H -3.97600000 -7.44090000 -4.07300000  
H -4.49500000 -6.30840000 -5.37210000  
Isomer B: 2.03345298 a.u.  
C 2.73350000 -11.70380000 -4.44960000  
C 4.64780000 -10.56360000 -5.63140000  
C 2.37130000 -9.54380000 -5.64450000  
C 3.37900000 -10.33970000 -4.77910000  
C 3.76000000 -9.61720000 -3.46670000  
C 4.66990000 -10.22200000 -2.57670000  
C 6.52910000 -11.70400000 -0.89260000  
C 3.22960000 -8.36560000 -3.11080000  
C 5.07680000 -9.60740000 -1.36600000  
C 6.15970000 -10.25890000 -0.46460000  
C 5.68230000 -10.34290000 1.00800000  
C 3.59530000 -7.74030000 -1.91530000  
C 4.53000000 -8.33070000 -1.05630000  
C 7.44460000 -9.41470000 -0.56250000  
C 2.92440000 -6.46000000 -1.50180000  
C 0.62420000 -3.02500000 -3.52350000  
C 1.63550000 -3.77040000 -2.92400000  
C 4.65440000 -5.01790000 -2.58050000  
C 0.08280000 -1.93150000 -2.86060000  
C 2.13610000 -3.41730000 -1.64910000  
C 5.63320000 -3.89500000 -2.32080000  
C 3.13630000 -4.14850000 -0.90500000  
C 8.48640000 -7.91800000 2.40850000  
C 5.38220000 -2.58970000 -2.74970000  
C 1.58100000 -2.24660000 -1.05940000  
C 6.72470000 -4.16180000 -1.49440000  
C 3.44780000 -3.71330000 0.37750000  
C 3.97520000 -9.53190000 6.34620000  
C 6.24950000 -1.53680000 -2.39860000  
C 5.76070000 -6.35060000 2.84720000  
C 3.75080000 -4.97820000 2.36570000  
C 4.43980000 -6.00230000 3.16180000  
C 8.09730000 -7.13520000 3.67520000  
C 6.55180000 -7.04280000 3.80820000  
C 9.39570000 -4.94060000 -0.33800000  
C 7.73300000 -3.18240000 -1.29520000  

C 3.82200000 -6.50850000 4.30600000  
C 8.77730000 -7.85370000 4.87030000  
C 2.03250000 -1.76890000 0.08980000  
C 5.88300000 -7.58790000 4.93300000  
C 4.51520000 -7.35830000 5.18580000  
C 7.44210000 -1.86560000 -1.71820000  
C 3.00100000 -2.45920000 0.84020000  
C 3.84920000 -7.99410000 6.42660000  
C 2.34290000 -7.65750000 6.54960000  
C 8.69480000 -5.71100000 3.61830000  
C 9.08430000 -3.44420000 -0.57790000  
C 9.07480000 -2.72970000 0.78910000  
C 3.49000000 -1.85640000 2.00830000  
C 4.54810000 -7.48710000 7.70710000  
C 10.24970000 -2.89100000 -1.43750000  
C 1.99040000 0.00220000 1.65510000  
C 2.99410000 -0.61490000 2.40560000  
H 2.40490000 -12.21920000 -5.37820000  
H 4.39130000 -11.03690000 -6.60400000  
H 2.13000000 -10.09680000 -6.57840000  
H 3.44380000 -12.38060000 -3.93100000  
H 1.84570000 -11.56250000 -3.79580000  
H 5.37350000 -11.23090000 -5.12190000  
H 1.41660000 -9.38550000 -5.09750000  
H 5.15050000 -9.59370000 -5.83680000  
H 2.79430000 -8.55960000 -5.94150000  
H 5.06700000 -11.18050000 -2.85790000  
H 5.63010000 -12.35790000 -0.88600000  
H 6.99560000 -11.72280000 -1.90130000  
H 7.27440000 -12.14680000 -0.19630000  
H 2.51350000 -7.86320000 -3.74330000  
H 4.65070000 -10.75320000 1.05710000  
H 6.34450000 -11.00440000 1.60750000  
H 7.83200000 -9.41990000 -1.60440000  
H 2.10350000 -6.23600000 -2.19870000  
H 5.70460000 -9.36460000 1.52440000  
H 0.24190000 -3.31070000 -4.49490000  
H 8.23620000 -9.81880000 0.10420000  
H 1.96710000 -4.61720000 -3.48990000  
H 2.41110000 -6.64730000 -0.53040000  
H 5.23210000 -5.90930000 -2.91170000  
H 4.02560000 -4.76810000 -3.44680000  
H 7.25310000 -8.35990000 -0.29060000  
H -0.71880000 -1.39940000 -3.33930000  
H 7.99240000 -8.91210000 2.40750000  
H 4.46100000 -2.39130000 -3.27900000  
H 8.20870000 -7.37420000 1.49170000  
H 9.58560000 -8.07660000 2.36030000  
H 3.51650000 -9.90790000 5.40600000  
H 8.74060000 -5.36490000 0.44400000  
H 5.03510000 -9.85980000 6.37180000  
H 8.45020000 -8.91410000 4.93690000  
H 9.29380000 -5.52310000 -1.27900000  
H 3.46000000 -10.01580000 7.20420000  
H 2.90510000 -4.46560000 2.81200000  
H 1.78550000 -8.00440000 5.65250000  
H 9.88310000 -7.86050000 4.75200000  
H 2.79790000 -6.22050000 4.49310000  
H 6.42050000 -8.19080000 5.64300000  
H 8.31430000 -5.13180000 2.75760000  
H 10.43420000 -5.07840000 0.03440000  
H 9.80210000 -5.74920000 3.52610000  
H 8.20880000 -3.07200000 1.39570000  
H 1.89720000 -8.16020000 7.43550000  
H 8.13820000 -1.08750000 -1.46180000  
H 8.55380000 -7.33460000 5.82770000  
H 2.18890000 -6.56440000 6.67980000  
H 10.21740000 -3.33000000 -2.45820000  
H 8.43990000 -5.14940000 4.54300000  
H 4.27160000 -2.32050000 2.59570000  
H 5.61200000 -7.80070000 7.74660000  
H 10.00780000 -2.94490000 1.35390000  
H 4.04990000 -7.89220000 8.61450000  
H 8.99700000 -1.62850000 0.67010000  
H 11.23380000 -3.13840000 -0.98320000  
H 10.22100000 -1.78650000 -1.52940000  
H 4.50980000 -6.37720000 7.75370000  
H 1.60530000 0.94440000 2.00700000  
H 3.37450000 -0.13890000 3.30020000  
N 3.87670000 -5.33080000 -1.35140000  
N 0.58690000 -1.54030000 -1.65600000  
N 4.16820000 -4.64020000 1.18040000  
N 1.50660000 -0.59730000 0.52430000  
O 4.84050000 -7.69050000 0.14980000  
O 6.75310000 -5.38810000 -0.83880000  
O 6.30980000 -5.92620000 1.62640000  
Ga 5.18790000 -5.84610000 0.10180000  
C 5.82080000 -0.07500000 -2.64180000  
C 4.66350000 0.24650000 -1.67620000  
H 4.35620000 1.30930000 -1.76600000  
H 3.78510000 -0.39840000 -1.88370000  
H 4.97400000 0.06870000 -0.62350000  
C 5.35420000 0.11700000 -4.10350000  
H 6.13300000 -0.24730000 -4.80760000  
H 4.40660000 -0.42110000 -4.31170000  
H 5.16530000 1.19010000 -4.32150000  
C 6.95320000 0.94960000 -2.38160000  
H 6.61920000 1.98040000 -2.63170000  
H 7.24730000 0.96250000 -1.31000000  
H 7.84230000 0.71870000 -3.00750000  
Ga -0.00100000 -0.00060000 -0.58440000  
C -11.49980000 3.49360000 -4.44540000  
C -11.47560000 1.26630000 -5.62860000  
C -9.45100000 2.72350000 -5.64290000  
C -10.64420000 2.25080000 -4.77650000  
C -10.20920000 1.55810000 -3.46500000  
C -11.18800000 1.07350000 -2.57450000  
C -13.40120000 0.20710000 -0.88910000  
C -8.86010000 1.38940000 -3.11010000  
C -10.85930000 0.41260000 -1.36440000  
C -11.96520000 -0.19840000 -0.46260000  

C -11.79730000 0.25560000 1.01040000  
C -8.50150000 0.75910000 -1.91500000  
C -9.48030000 0.24560000 -1.05570000  
C -11.87930000 -1.73320000 -0.56180000  
C -7.05710000 0.69870000 -1.50210000  
C -2.93210000 0.97070000 -3.52420000  
C -4.08360000 0.46850000 -2.92460000  
C -6.67460000 -1.52040000 -2.58140000  
C -1.71450000 0.89210000 -2.86130000  
C -4.02840000 -0.14170000 -1.64970000  
C -6.19240000 -2.92980000 -2.32220000  
C -5.16200000 -0.64170000 -0.90560000  
C -11.10260000 -3.38890000 2.40650000  
C -4.93660000 -3.36560000 -2.75120000  
C -2.73710000 -0.24690000 -1.06000000  
C -6.96980000 -3.74150000 -1.49620000  
C -4.94120000 -1.12930000 0.37690000  
C -10.24360000 1.32040000 6.34790000  
C -4.45940000 -4.64360000 -2.40050000  
C -8.38160000 -1.81380000 2.84620000  
C -6.18810000 -0.75940000 2.36520000  
C -7.41950000 -0.84430000 3.16130000  
C -10.23010000 -3.44500000 3.67300000  
C -9.37660000 -2.15330000 3.80710000  
C -8.98140000 -5.66440000 -0.34140000  
C -6.62680000 -5.10480000 -1.29790000  
C -7.54880000 -0.05680000 4.30610000  
C -11.19230000 -3.67530000 4.86800000  
C -2.54960000 -0.87680000 0.08930000  
C -9.51400000 -1.30240000 4.93250000  
C -8.63120000 -0.23280000 5.18580000  
C -5.34120000 -5.51190000 -1.72080000  
C -3.63180000 -1.37000000 0.83960000  
C -8.84860000 0.66110000 6.42720000  
C -7.80430000 1.79760000 6.55050000  
C -9.29610000 -4.67490000 3.61490000  
C -7.53030000 -6.14410000 -0.58190000  
C -6.90720000 -6.49550000 0.78480000  
C -3.35460000 -2.09510000 2.00760000  
C -8.75810000 -0.19840000 7.70720000  
C -7.63510000 -7.42880000 -1.44310000  
C -0.99500000 -1.72650000 1.65470000  
C -2.03160000 -2.28690000 2.40510000  
H -11.78190000 4.03680000 -5.37340000  
H -11.75710000 1.72630000 -6.60080000  
H -9.80920000 3.21000000 -6.57630000  
H -12.44100000 3.21860000 -3.92570000  
H -10.93130000 4.19020000 -3.79200000  
H -12.41650000 0.97330000 -5.11840000  
H -8.83460000 3.46970000 -5.09630000  
H -10.88920000 0.34480000 -5.83510000  
H -8.81210000 1.86390000 -5.94080000  
H -12.21660000 1.21060000 -2.85490000  
H -13.51600000 1.31280000 -0.88150000  
H -13.65220000 -0.18640000 -1.89780000  
H -14.15740000 -0.21610000 -0.19240000  
H -8.06680000 1.75760000 -3.74280000  
H -11.63420000 1.35360000 1.06020000  
H -12.70150000 0.01450000 1.61030000  
H -12.07900000 -2.06500000 -1.60380000  
H -6.45250000 1.29730000 -2.19910000  
H -10.96220000 -0.25540000 1.52580000  
H -2.98800000 1.44450000 -4.49570000  
H -12.62520000 -2.21610000 0.10520000  
H -4.98260000 0.60540000 -3.49040000  
H -6.96190000 1.23670000 -0.53060000  
H -7.73550000 -1.57420000 -2.91260000  
H -6.14380000 -1.10080000 -3.44760000  
H -10.87040000 -2.09670000 -0.29110000  
H -0.85260000 1.31970000 -3.34010000  
H -11.71630000 -2.46380000 2.40660000  
H -4.30380000 -2.66730000 -3.28000000  
H -10.49300000 -3.41930000 1.48950000  
H -11.78980000 -4.26130000 2.35730000  
H -10.34070000 1.90610000 5.40800000  
H -9.02040000 -4.88560000 0.44130000  
H -11.05740000 0.56620000 6.37360000  
H -11.94660000 -2.86150000 4.93550000  
H -9.43460000 -5.28350000 -1.28200000  
H -10.40490000 2.00810000 7.20630000  
H -5.32110000 -0.28370000 2.81170000  
H -7.82660000 2.45420000 5.65370000  
H -11.75150000 -4.62910000 4.74880000  
H -6.78730000 0.68590000 4.49350000  
H -10.30460000 -1.46690000 5.64270000  
H -8.60410000 -4.63450000 2.75430000  
H -9.62070000 -6.49460000 0.03020000  
H -9.88320000 -5.61440000 3.52170000  
H -6.76950000 -5.57530000 1.39250000  
H -8.01680000 2.43450000 7.43670000  
H -5.01620000 -6.50430000 -1.46520000  
H -10.63090000 -3.74250000 5.82520000  
H -6.78050000 1.38480000 6.68020000  
H -7.99910000 -7.17960000 -2.46340000  
H -8.68230000 -4.73630000 4.53950000  
H -4.14750000 -2.53970000 2.59500000  
H -9.56120000 -0.96340000 7.74650000  
H -7.56100000 -7.19580000 1.34880000  
H -8.85990000 0.43510000 8.61510000  
H -5.91520000 -6.97990000 0.66520000  
H -8.34200000 -8.15730000 -0.98960000  
H -6.66480000 -7.95680000 -1.53590000  
H -7.77740000 -0.71970000 7.75310000  
H 0.01340000 -1.86450000 2.00660000  
H -1.80990000 -2.85450000 3.29960000  
N -6.55620000 -0.69090000 -1.35210000  
N -1.62810000 0.26030000 -1.65650000  
N -6.10420000 -1.28930000 1.17970000  
N -1.27190000 -1.00760000 0.52400000  
O -9.08130000 -0.34460000 0.14980000  
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O -8.04550000 -3.15240000 -0.84030000  
O -8.28870000 -2.50080000 1.62500000  
Ga -7.65850000 -1.56840000 0.10100000  
C -2.97920000 -5.00400000 -2.64360000  
C -2.12170000 -4.16280000 -1.67820000  
H -1.04780000 -4.42860000 -1.76810000  
H -2.24040000 -3.07960000 -1.88580000  
H -2.43090000 -4.34250000 -0.62540000  
C -2.57950000 -4.69630000 -4.10540000  
H -3.28430000 -5.18880000 -4.80940000  
H -2.57160000 -3.60670000 -4.31390000  
H -1.55560000 -5.06940000 -4.32310000  
C -2.65870000 -6.49710000 -2.38320000  
H -1.59910000 -6.72380000 -2.63280000  
H -2.79520000 -6.75810000 -1.31150000  
H -3.30330000 -7.15140000 -3.00920000  
C 8.77590000 8.20820000 -4.44530000  
C 6.83510000 9.30140000 -5.62820000  
C 7.08400000 6.81940000 -5.64260000  
C 7.27180000 8.08910000 -4.77620000  
C 6.45450000 8.05890000 -3.46450000  
C 6.52470000 9.14880000 -2.57400000  
C 6.88200000 11.49840000 -0.88850000  
C 5.63360000 6.97510000 -3.10960000  
C 5.78810000 9.19490000 -1.36390000  
C 5.81250000 10.45800000 -0.46210000  
C 6.12140000 10.08540000 1.01090000  
C 4.90830000 6.98000000 -1.91460000  
C 4.95340000 8.08440000 -1.05530000  
C 4.44060000 11.15170000 -0.56130000  
C 4.13340000 5.75960000 -1.50170000  
C 2.30580000 2.05200000 -3.52420000  
C 2.44680000 3.30030000 -2.92450000  
C 2.02080000 6.53870000 -2.58140000  
C 1.62910000 1.03680000 -2.86120000  
C 1.89090000 3.55760000 -1.64970000  
C 0.55910000 6.82610000 -2.32240000  
C 2.02470000 4.78940000 -0.90560000  
C 2.61730000 11.30760000 2.40600000  
C -0.44630000 5.95650000 -2.75120000  
C 1.15390000 2.49200000 -1.06000000  
C 0.24500000 7.90520000 -1.49640000  
C 1.49180000 4.84200000 0.37680000  
C 6.26450000 8.20780000 6.34810000  
C -1.79160000 6.18210000 -2.40020000  
C 2.61960000 8.16370000 2.84620000  
C 2.43530000 5.73690000 2.36540000  
C 2.97760000 6.84560000 3.16160000  
C 2.13200000 10.58040000 3.67260000  
C 2.82340000 9.19520000 3.80700000  
C -0.41420000 10.60880000 -0.34170000  
C -1.10710000 8.28990000 -1.29810000  
C 3.72380000 6.56370000 4.30660000  
C 2.41400000 11.52900000 4.86740000  
C 0.51440000 2.64470000 0.08920000  
C 3.62860000 8.88850000 4.93270000  
C 4.11280000 7.58900000 5.18630000  
C -2.10260000 7.38010000 -1.72080000  
C 0.62840000 3.82860000 0.83950000  
C 4.99540000 7.33020000 6.42780000  
C 5.45650000 5.85730000 6.55170000  
C 0.59980000 10.38710000 3.61440000  
C -1.55530000 9.59220000 -0.58220000  
C -2.17130000 9.22840000 0.78450000  
C -0.13840000 3.95130000 2.00720000  
C 4.20600000 7.68270000 7.70760000  
C -2.61530000 10.32540000 -1.44350000  
C -0.99930000 1.72360000 1.65420000  
C -0.96640000 2.90150000 2.40450000  
H 9.38730000 8.18070000 -5.37340000  
H 7.37410000 9.31510000 -6.60040000  
H 7.68440000 6.88620000 -6.57610000  
H 9.00880000 9.16070000 -3.92560000  
H 9.09490000 7.36730000 -3.79200000  
H 7.05220000 10.26270000 -5.11790000  
H 7.42190000 5.91230000 -5.09600000  
H 5.74380000 9.25470000 -5.83440000  
H 6.02010000 6.69630000 -5.94030000  
H 7.15810000 9.97080000 -2.85440000  
H 7.89680000 11.04450000 -0.88100000  
H 6.66700000 11.91270000 -1.89720000  
H 6.89410000 12.36490000 -0.19170000  
H 5.55550000 6.10410000 -3.74230000  
H 6.99060000 9.39490000 1.06070000  
H 6.36500000 10.98890000 1.61080000  
H 4.25320000 11.49050000 -1.60320000  
H 4.34930000 4.93660000 -2.19860000  
H 5.26130000 9.61790000 1.52620000  
H 2.74390000 1.86350000 -4.49580000  
H 4.39580000 12.03920000 0.10570000  
H 3.01500000 4.01030000 -3.49030000  
H 4.55150000 5.40810000 -0.53010000  
H 2.50490000 7.48420000 -2.91240000  
H 2.11880000 5.86920000 -3.44760000  
H 3.62110000 10.46010000 -0.29050000  
H 1.56840000 0.07660000 -3.34000000  
H 3.72530000 11.37580000 2.40610000  
H -0.15800000 5.05910000 -3.28000000  
H 2.28580000 10.79500000 1.48900000  
H 2.20600000 12.33920000 2.35670000  
H 6.82020000 7.99810000 5.40850000  
H 0.27970000 10.25310000 0.44110000  
H 6.01900000 9.28980000 6.37330000  
H 3.49600000 11.77490000 4.93500000  
H 0.14230000 10.81080000 -1.28230000  
H 6.94050000 8.00350000 7.20680000  
H 2.41330000 4.74830000 2.81200000  
H 6.03610000 5.54760000 5.65510000  
H 1.86790000 12.49040000 4.74800000  
H 3.98580000 5.53280000 4.49420000  
H 3.88170000 9.65560000 5.64270000  

H 0.28870000 9.76740000 2.75400000  
H -0.81340000 11.57770000 0.02990000  
H 0.08020000 11.36550000 3.52070000  
H -1.44340000 8.64890000 1.39220000  
H 6.11400000 5.72270000 7.43810000  
H -3.12450000 7.59500000 -1.46520000  
H 2.07480000 11.07680000 5.82480000  
H 4.58650000 5.17770000 6.68140000  
H -2.21730000 10.51600000 -2.46370000  
H 0.23950000 9.88670000 4.53920000  
H -0.12710000 4.86030000 2.59450000  
H 3.94600000 8.76090000 7.74660000  
H -2.45070000 10.14480000 1.34840000  
H 4.80530000 7.45390000 8.61560000  
H -3.08690000 8.61170000 0.66490000  
H -2.89270000 11.30180000 -0.99000000  
H -3.55780000 9.74910000 -1.53650000  
H 3.26380000 7.09480000 7.75370000  
H -1.62320000 0.91940000 2.00600000  
H -1.56900000 2.99350000 3.29880000  
N 2.67960000 6.02120000 -1.35200000  
N 1.03870000 1.27790000 -1.65640000  
N 1.93480000 5.92920000 1.17970000  
N -0.23790000 1.60380000 0.52370000  
O 4.24250000 8.03440000 0.15010000  
O 1.29310000 8.54210000 -0.84040000  
O 1.97860000 8.42690000 1.62490000  
Ga 2.47100000 7.41460000 0.10100000  
C -2.84370000 5.08030000 -2.64280000  
C -2.54300000 3.91680000 -1.67800000  
H -3.31020000 3.11970000 -1.76730000  
H -1.54570000 3.47810000 -1.88670000  
H -2.54300000 4.27420000 -0.62510000  
C -2.77810000 4.58080000 -4.10480000  
H -3.61300000 3.88030000 -4.32200000  
H -2.85330000 5.43760000 -4.80850000  
H -1.83830000 4.02970000 -4.31420000  
C -4.29690000 5.54890000 -2.38110000  
H -5.02300000 4.74430000 -2.63000000  
H -4.45380000 5.79760000 -1.30930000  
H -4.54220000 6.43420000 -3.00690000  
Isomer C: 1.99552037 a.u.  
C 9.32820000 7.49050000 -3.35160000  
C 7.68840000 8.15930000 -5.14740000  
C 7.97320000 5.75910000 -4.53150000  
C 7.94020000 7.19930000 -3.96350000  
C 6.84760000 7.40660000 -2.88990000  
C 6.69440000 8.67110000 -2.28630000  
C 6.62810000 11.35200000 -1.15440000  
C 5.99120000 6.37310000 -2.47240000  
C 5.70270000 8.93420000 -1.30850000  
C 5.55690000 10.34140000 -0.66720000  
C 5.70400000 10.24500000 0.87090000  
C 5.00550000 6.59840000 -1.50710000  
C 4.82550000 7.87250000 -0.95560000  
C 4.18100000 10.93650000 -1.03630000  
C 4.14740000 5.45980000 -1.02740000  
C 2.64690000 1.44580000 -2.87160000  
C 2.72580000 2.76520000 -2.42650000  
C 2.40630000 5.99840000 -2.71240000  
C 1.79280000 0.54870000 -2.23890000  
C 1.92860000 3.21210000 -1.34900000  
C 0.92630000 6.15130000 -2.94550000  
C 1.94590000 4.54020000 -0.78450000  
C 2.60180000 12.15070000 2.40310000  
C 0.23380000 5.28970000 -3.80040000  
C 1.08180000 2.24150000 -0.75460000  
C 0.25680000 7.18220000 -2.28340000  
C 1.21820000 4.77560000 0.38940000  
C 5.00340000 9.40050000 6.20870000  
C -1.14440000 5.46530000 -4.03980000  
C 1.87990000 8.55750000 2.31810000  
C 1.80360000 6.06760000 2.31650000  
C 2.18690000 7.34070000 2.95050000  
C 1.43540000 11.15340000 2.56780000  
C 1.98680000 9.77870000 3.04430000  
C -1.34470000 9.90530000 -2.21290000  
C -1.12390000 7.40380000 -2.50300000  
C 2.75610000 7.32480000 4.22490000  
C 0.44880000 11.70070000 3.62900000  
C 0.27210000 2.55350000 0.30620000  
C 2.61930000 9.72850000 4.30900000  
C 3.02840000 8.52190000 4.91040000  
C -1.79490000 6.54220000 -3.40050000  
C 0.29720000 3.82860000 0.88450000  
C 3.71420000 8.55340000 6.29390000  
C 4.11320000 7.14890000 6.80860000  
C 0.66000000 11.11720000 1.22980000  
C -1.86490000 8.52990000 -1.74520000  
C -1.60200000 8.37240000 -0.23850000  
C -0.61570000 4.10320000 1.91520000  
C 2.75640000 9.17790000 7.33210000  
C -3.39970000 8.51110000 -1.94830000  
C -1.41590000 1.82790000 1.78890000  
C -1.48050000 3.10170000 2.35980000  
H 10.13410000 7.29810000 -4.09280000  
H 8.43340000 7.99310000 -5.95560000  
H 8.76550000 5.65790000 -5.30490000  
H 9.42230000 8.54840000 -3.02970000  
H 9.50420000 6.84000000 -2.46760000  
H 7.76870000 9.22250000 -4.83940000  
H 8.19680000 5.02150000 -3.73050000  
H 6.67320000 7.99390000 -5.56880000  
H 7.00480000 5.50030000 -5.01200000  
H 7.36590000 9.44970000 -2.60070000  
H 7.65170000 10.99380000 -0.90980000  
H 6.54530000 11.52680000 -2.24910000  
H 6.49670000 12.33930000 -0.65980000  
H 6.07670000 5.37800000 -2.88180000  
H 6.63400000 9.69660000 1.13440000  
H 5.76050000 11.25620000 1.32880000  

H 4.05710000 10.96390000 -2.14050000  
H 4.50060000 4.51240000 -1.47090000  
H 4.84810000 9.73380000 1.35220000  
H 3.26620000 1.11260000 -3.69470000  
H 4.08080000 11.97390000 -0.65070000  
H 3.45200000 3.37360000 -2.92440000  
H 4.32170000 5.33860000 0.06660000  
H 2.88280000 6.95980000 -3.00760000  
H 2.84160000 5.27140000 -3.41330000  
H 3.34820000 10.34590000 -0.61460000  
H 1.76290000 -0.46580000 -2.59950000  
H 3.12690000 12.33660000 3.36260000  
H 0.79130000 4.49540000 -4.27330000  
H 3.33890000 11.75800000 1.67620000  
H 2.23460000 13.13170000 2.03060000  
H 5.68440000 8.98970000 5.43210000  
H -0.27520000 10.05510000 -1.96370000  
H 4.78410000 10.45840000 5.95480000  
H 0.94800000 11.91100000 4.59690000  
H -1.46390000 10.00730000 -3.31320000  
H 5.54160000 9.39940000 7.18150000  
H 1.73620000 5.18130000 2.93800000  
H 4.81460000 6.65330000 6.10280000  
H -0.00940000 12.65630000 3.29280000  
H 2.98210000 6.36340000 4.66210000  
H 2.78110000 10.64750000 4.84950000  
H 1.32120000 10.85410000 0.38100000  
H -1.91120000 10.72720000 -1.72350000  
H 0.23610000 12.11710000 0.99150000  
H -2.10710000 9.16540000 0.35400000  
H 4.62480000 7.22010000 7.79320000  
H -2.83840000 6.69540000 -3.61260000  
H -0.36750000 10.96790000 3.80950000  
H 3.21640000 6.50740000 6.94870000  
H -3.66470000 8.71770000 -3.00770000  
H -0.19180000 10.40870000 1.28940000  
H -0.68760000 5.08750000 2.35820000  
H 2.52040000 10.23490000 7.08980000  
H -1.92370000 7.37220000 0.12490000  
H 3.21170000 9.16440000 8.34630000  
H -1.02870000 7.84450000 2.82510000  
H -3.88860000 9.29570000 -1.33050000  
H -3.82680000 7.53080000 -1.64380000  
H 1.80310000 8.60750000 7.36950000  
H -2.07520000 1.06690000 2.17170000  
H -2.19000000 3.30780000 3.15070000  
N 2.70550000 5.69170000 -1.28530000  
N 1.02050000 0.96070000 -1.19360000  
N 1.50590000 6.00070000 1.05130000  
N -0.52470000 1.56890000 0.78430000  
O 3.83190000 8.06760000 0.00930000  
O 0.98500000 8.04190000 -1.46080000  
O 1.41650000 8.53600000 0.99870000  
Ga 2.13630000 7.27780000 -0.19780000  
C -1.95350000 4.53860000 -4.97230000  
C -3.15650000 3.94930000 -4.20060000  
H -3.70770000 3.21530000 -4.82710000  
H -2.80860000 3.44110000 -3.27590000  
H -3.88710000 4.73170000 -3.90980000  
C -1.12210000 3.35340000 -5.52020000  
H -0.28260000 3.71480000 -6.15250000  
H -0.71570000 2.73930000 -4.68850000  
H -1.74970000 2.68970000 -6.15400000  
C -2.46940000 5.35060000 -6.17910000  
H -3.02870000 4.69670000 -6.88300000  
H -3.15550000 6.16330000 -5.86070000  
H -1.61870000 5.80910000 -6.72810000  
Ga -0.16290000 -0.15600000 -0.08460000  
C 11.50750000 -2.17800000 4.13940000  
C 10.25430000 -3.53480000 5.85680000  
C 9.38670000 -1.31260000 5.12860000  
C 10.10680000 -2.59370000 4.64060000  
C 9.34910000 -3.32650000 3.50990000  
C 9.88290000 -4.51240000 2.96820000  
C 11.22130000 -6.90950000 1.99940000  
C 8.13530000 -2.85430000 2.98250000  
C 9.23140000 -5.24440000 1.94460000  
C 9.82750000 -6.57380000 1.40610000  
C 10.00960000 -6.50490000 -0.13060000  
C 7.47260000 -3.54430000 1.96270000  
C 7.98660000 -4.74880000 1.46490000  
C 8.88930000 -7.73840000 1.78520000  
C 6.21990000 -2.96760000 1.36410000  
C 2.76200000 -0.27820000 3.00810000  
C 3.52490000 -1.37020000 2.59000000  
C 4.81650000 -4.34950000 2.87910000  
C 1.64560000 0.11160000 2.27390000  
C 3.16300000 -2.10420000 1.43820000  
C 3.56320000 -5.18110000 2.97410000  
C 3.88900000 -3.22390000 0.89250000  
C 7.37710000 -9.28430000 -1.01050000  
C 2.49770000 -4.78260000 3.78450000  
C 2.01400000 -1.65080000 0.74350000  
C 3.49210000 -6.36910000 2.23920000  
C 3.51350000 -3.71430000 -0.36350000  
C 9.63900000 -5.84660000 -5.67500000  
C 1.34860000 -5.58620000 3.91180000  
C 6.09920000 -6.61960000 -2.15060000  
C 4.90220000 -4.44030000 -2.17300000  
C 5.89890000 -5.36250000 -2.74180000  
C 6.73230000 -9.12390000 -2.40170000  
C 6.78040000 -7.64010000 -2.86730000  
C 3.43850000 -9.45370000 1.74590000  
C 2.35810000 -7.21620000 2.34170000  
C 6.53050000 -5.03570000 -3.94220000  
C 7.48070000 -10.08800000 -3.35870000  
C 1.57720000 -2.27130000 -0.40070000  
C 7.44910000 -7.26350000 -4.05880000  
C 7.36070000 -5.96290000 -4.59850000  
C 1.31270000 -6.80520000 3.20310000  
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C 2.30690000 -3.31830000 -0.97700000  
C 8.12670000 -5.62060000 -5.89600000  
C 7.93770000 -4.15110000 -6.34590000  
C 5.26280000 -9.60090000 -2.34600000  
C 2.24020000 -8.50790000 1.48400000  
C 2.19100000 -8.12320000 -0.01070000  
C 1.79040000 -3.92380000 -2.13330000  
C 7.63330000 -6.52840000 -7.04400000  
C 0.95440000 -9.32300000 1.78120000  
C -0.07290000 -2.38520000 -2.08750000  
C 0.59970000 -3.45270000 -2.68900000  
H 12.05160000 -1.60390000 4.92060000  
H 10.75210000 -3.01210000 6.70230000  
H 9.96150000 -0.82330000 5.94480000  
H 12.13140000 -3.05940000 3.88370000  
H 11.41920000 -1.53880000 3.23430000  
H 10.86790000 -4.42730000 5.61470000  
H 9.28890000 -0.57370000 4.30390000  
H 9.25530000 -3.88110000 6.19990000  
H 8.37850000 -1.55310000 5.53040000  
H 10.81770000 -4.85820000 3.37120000  
H 11.95350000 -6.10530000 1.76880000  
H 11.16650000 -7.05850000 3.09960000  
H 11.61800000 -7.85530000 1.56950000  
H 7.68990000 -1.94010000 3.34420000  
H 10.57330000 -5.58880000 -0.41000000  
H 10.57620000 -7.38570000 -0.50340000  
H 8.80780000 -7.82270000 2.89050000  
H 6.01190000 -1.97680000 1.80750000  
H 9.05090000 -6.50740000 -0.68130000  
H 3.05120000 0.28100000 3.88880000  
H 9.27620000 -8.70260000 1.39020000  
H 4.40670000 -1.56490000 3.16530000  
H 6.42450000 -2.75600000 0.28930000  
H 5.65880000 -4.99180000 3.22030000  
H 4.80740000 -3.53090000 3.61450000  
H 7.86760000 -7.59180000 1.39080000  
H 1.07820000 0.96490000 2.60990000  
H 8.39500000 -8.84340000 -1.00750000  
H 2.59230000 -3.84790000 4.31630000  
H 6.76930000 -8.81440000 -0.21580000  
H 7.46690000 -10.35790000 -0.73630000  
H 9.99990000 -5.23380000 -4.82070000  
H 4.37800000 -9.09210000 1.28530000  
H 9.86910000 -6.91110000 -5.46150000  
H 8.56430000 -9.84360000 -3.40180000  
H 3.59890000 -9.58060000 2.83810000  
H 10.21760000 -5.55980000 -6.57990000  
H 4.50490000 -3.65260000 -2.80400000  
H 8.28300000 -3.44830000 -5.55690000  
H 7.39720000 -11.14030000 -3.00910000  
H 6.35400000 -4.05130000 -4.35020000  
H 8.04090000 -7.98210000 -4.59730000  
H 4.67750000 -9.05990000 -1.57800000  
H 3.25780000 -10.45780000 1.30430000  
H 5.20640000 -10.68150000 -2.09090000  
H 3.10020000 -7.58190000 -0.32920000  
H 8.52880000 -3.94020000 -7.26370000  
H 0.44330000 -7.42440000 3.33020000  
H 7.04830000 -10.04840000 -4.38220000  
H 6.87260000 -3.94240000 -6.58550000  
H 0.92580000 -9.64130000 2.84590000  
H 4.76970000 -9.44840000 -3.33040000  
H 2.28340000 -4.76680000 -2.59820000  
H 7.84940000 -7.59840000 -6.84400000  
H 2.10010000 -9.02900000 -0.64880000  
H 8.13500000 -6.26260000 -7.99970000  
H 1.31900000 -7.46350000 -0.21140000  
H 0.91340000 -10.24250000 1.15710000  
H 0.04150000 -8.73500000 1.54300000  
H 6.53630000 -6.41400000 -7.18180000  
H -0.98500000 -2.03360000 -2.53950000  
H 0.20790000 -3.90410000 -3.58970000  
N 5.05810000 -3.88020000 1.48640000  
N 1.29060000 -0.58250000 1.15680000  
N 4.44100000 -4.60480000 -0.96790000  
N 0.44680000 -1.79140000 -0.97240000  
O 7.31010000 -5.41940000 0.43790000  
O 4.59810000 -6.75900000 1.48460000  
O 5.54090000 -6.88780000 -0.89490000  
Ga 5.43020000 -5.50150000 0.37520000  
C 0.14720000 -5.18880000 4.79670000  
C -1.14510000 -5.18850000 3.94790000  
H -2.00810000 -4.81580000 4.54050000  
H -1.01770000 -4.54130000 3.05410000  
H -1.41480000 -6.20680000 3.60020000  
C 0.29450000 -3.78160000 5.42500000  
H 1.16560000 -3.74260000 6.11410000  
H 0.41620000 -3.00820000 4.63710000  
H -0.60720000 -3.51760000 6.01940000  
C 0.00150000 -6.20660000 5.94760000  
H -0.83960000 -5.92480000 6.61770000  
H -0.20300000 -7.22850000 5.56500000  
H 0.93370000 -6.24210000 6.55190000  
C -11.32120000 3.23050000 -4.73340000  
C -11.00710000 1.11290000 -6.06680000  
C -9.09250000 2.67030000 -5.70530000  
C -10.35420000 2.06600000 -5.04120000  
C -10.04690000 1.29090000 -3.73950000  
C -11.09800000 0.68190000 -3.02600000  
C -13.44880000 -0.44210000 -1.72720000  
C -8.74680000 1.16830000 -3.22110000  
C -10.88440000 -0.05910000 -1.83700000  
C -12.06290000 -0.75710000 -1.10480000  
C -12.13170000 -0.30000000 0.37370000  
C -8.50200000 0.45610000 -2.04300000  
C -9.54710000 -0.18690000 -1.36680000  
C -11.87420000 -2.28610000 -1.18720000  
C -7.11230000 0.41560000 -1.47220000  
C -2.82570000 0.58790000 -3.31810000  
C -4.02590000 0.13580000 -2.76700000  

C -6.67800000 -1.76110000 -2.58790000  
C -1.65600000 0.54900000 -2.56520000  
C -4.05880000 -0.41860000 -1.46790000  
C -6.03790000 -3.11600000 -2.43130000  
C -5.23570000 -0.89560000 -0.78460000  
C -11.28960000 -3.79520000 1.95310000  
C -4.95120000 -3.49190000 -3.22380000  
C -2.82270000 -0.46170000 -0.77690000  
C -6.56580000 -3.99830000 -1.48320000  
C -5.12410000 -1.25190000 0.56510000  
C -11.28100000 1.15780000 5.71710000  
C -4.39060000 -4.77890000 -3.11530000  
C -8.77840000 -2.00130000 2.66740000  
C -6.62450000 -0.79380000 2.37280000  
C -7.93480000 -0.93920000 3.02820000  
C -10.60740000 -3.71770000 3.33350000  
C -9.86440000 -2.36210000 3.50970000  
C -8.09660000 -6.50480000 -0.41590000  
C -6.03750000 -5.30780000 -1.34070000  
C -8.26380000 -0.10550000 4.09760000  
C -11.71330000 -3.94970000 4.39590000  
C -2.72440000 -0.99890000 0.48210000  
C -10.19970000 -1.46950000 4.55810000  
C -9.43150000 -0.32310000 4.85180000  
C -4.96260000 -5.67300000 -2.18630000  
C -3.86540000 -1.40770000 1.18260000  
C -9.86420000 0.61200000 6.00320000  
C -8.92540000 1.82980000 6.18510000  
C -9.59990000 -4.88170000 3.47570000  
C -6.57400000 -6.27580000 -0.24840000  
C -6.28220000 -5.68080000 1.14640000  
C -3.69150000 -1.95220000 2.46500000  
C -9.87440000 -0.17350000 7.33290000  
C -5.90440000 -7.67430000 -0.28970000  
C -1.30900000 -1.58660000 2.28020000  
C -2.41030000 -2.03670000 3.01440000  
H -11.51620000 3.83320000 -5.64700000  
H -11.19130000 1.63620000 -7.03020000  
H -9.35880000 3.21120000 -6.63940000  
H -12.30180000 2.86460000 -4.36460000  
H -10.88520000 3.89960000 -3.96020000  
H -11.98490000 0.72960000 -5.70830000  
H -8.59940000 3.40160000 -5.02870000  
H -10.34240000 0.24370000 -6.26300000  
H -8.36760000 1.87300000 -5.97840000  
H -12.09000000 0.79140000 -3.42580000  
H -13.65220000 0.65080000 -1.70730000  
H -13.51570000 -0.81390000 -2.77270000  
H -14.26230000 -0.94330000 -1.15840000  
H -7.90550000 1.63140000 -3.71390000  
H -12.13130000 0.80970000 0.43320000  
H -13.05900000 -0.67130000 0.86150000  
H -11.88550000 -2.61850000 -2.24780000  
H -6.43710000 1.04580000 -2.08000000  
H -11.29430000 -0.68360000 0.98530000  
H -2.80750000 0.98910000 -4.32210000  
H -12.68960000 -2.81490000 -0.64810000  
H -4.89550000 0.28130000 -3.37380000  
H -7.14070000 0.91360000 -0.47560000  
H -7.74240000 -1.93540000 -2.86240000  
H -6.27650000 -1.22980000 -3.46340000  
H -10.91060000 -2.60790000 -0.75250000  
H -0.74500000 0.92310000 -3.00190000  
H -11.93110000 -2.90460000 1.79300000  
H -4.56860000 -2.76880000 -3.92820000  
H -10.55410000 -3.87270000 1.13170000  
H -11.93210000 -4.69930000 1.87830000  
H -11.30060000 1.68690000 4.73970000  
H -8.69820000 -5.62930000 -0.10420000  
H -12.03690000 0.34570000 5.68850000  
H -12.51180000 -3.18060000 4.31300000  
H -8.33650000 -6.74820000 -1.47330000  
H -11.59590000 1.87300000 6.50790000  
H -5.85580000 -0.21560000 2.87400000  
H -8.88290000 2.43870000 5.25600000  
H -12.19850000 -4.94040000 4.25570000  
H -7.58860000 0.70550000 4.32760000  
H -11.05950000 -1.65900000 5.17580000  
H -8.84560000 -4.88160000 2.66560000  
H -8.44520000 -7.34730000 0.22010000  
H -10.11960000 -5.86340000 3.43070000  
H -6.77050000 -4.69970000 1.28870000  
H -9.28980000 2.49060000 7.00160000  
H -4.54310000 -6.66120000 -2.13000000  
H -11.28790000 -3.93680000 5.42300000  
H -7.89910000 1.50320000 6.45950000  
H -6.08160000 -8.16830000 -1.26970000  
H -9.06590000 -4.81360000 4.44810000  
H -4.52950000 -2.32650000 3.03770000  
H -10.62090000 -0.99460000 7.31980000  
H -6.64970000 -6.35680000 1.94880000  
H -10.13260000 0.49470000 8.18310000  
H -5.18860000 -5.53540000 1.28340000  
H -6.32180000 -8.33840000 0.49850000  
H -4.81130000 -7.60250000 -0.10040000  
H -8.87320000 -0.61540000 7.52750000  
H -0.33160000 -1.64610000 2.72890000  
H -2.27320000 -2.43450000 4.01040000  
N -6.59460000 -0.96620000 -1.33110000  
N -1.67480000 0.01950000 -1.31160000  
N -6.35660000 -1.40390000 1.25560000  
N -1.48980000 -1.05350000 1.03640000  
O -9.27980000 -0.88770000 -0.18360000  
O -7.68830000 -3.60690000 -0.75430000  
O -8.48430000 -2.75860000 1.52720000  
Ga -7.71270000 -1.90910000 0.03400000  
C -3.19370000 -5.24190000 -3.97380000  
C -2.05370000 -5.73330000 -3.05200000  
H -1.14340000 -5.97610000 -3.64150000  
H -1.79880000 -4.95120000 -2.30550000  
H -2.33240000 -6.65560000 -2.50210000  

C -2.62030000 -4.11890000 -4.87200000  
H -3.37470000 -3.77830000 -5.61360000  
H -2.29230000 -3.25220000 -4.25970000  
H -1.73790000 -4.48110000 -5.44320000  
C -3.64070000 -6.39820000 -4.89320000  
H -2.80270000 -6.72940000 -5.54420000  
H -3.97750000 -7.27880000 -4.30710000  
H -4.48110000 -6.07170000 -5.54330000  
Isomer D: 2.00311418 a.u.  
C -10.09060000 -6.69330000 -3.47570000  
C -8.46470000 -7.72180000 -5.10650000  
C -8.45180000 -5.26140000 -4.69600000  
C -8.64540000 -6.64030000 -4.01830000  
C -7.64980000 -6.89830000 -2.86430000  
C -7.70360000 -8.11480000 -2.15570000  
C -8.05540000 -10.68420000 -0.83270000  
C -6.68070000 -5.95780000 -2.47700000  
C -6.80940000 -8.42340000 -1.10040000  
C -6.86760000 -9.79620000 -0.37640000  
C -7.02870000 -9.59900000 1.15150000  
C -5.79170000 -6.22400000 -1.43100000  
C -5.82130000 -7.45560000 -0.76420000  
C -5.57750000 -10.58390000 -0.68480000  
C -4.82460000 -5.16310000 -0.98710000  
C -2.64740000 -1.63650000 -3.12120000  
C -2.93200000 -2.87150000 -2.54320000  
C -3.04340000 -6.12980000 -2.42350000  
C -1.80170000 -0.74430000 -2.47370000  
C -2.32120000 -3.25790000 -1.33050000  
C -1.57630000 -6.46150000 -2.50550000  
C -2.55580000 -4.49970000 -0.63820000  
C -3.55170000 -11.12050000 2.14950000  
C -0.74160000 -5.80550000 -3.41260000  
C -1.43650000 -2.31220000 -0.74010000  
C -1.06970000 -7.45540000 -1.66260000  
C -1.99430000 -4.65860000 0.62930000  
C -6.78300000 -8.13930000 6.55300000  
C 0.61560000 -6.16160000 -3.53070000  
C -3.29230000 -8.05340000 2.89980000  
C -2.95420000 -5.60760000 2.60400000  
C -3.53820000 -6.74280000 3.33700000  
C -2.97590000 -10.56650000 3.46770000  
C -3.54310000 -9.14940000 3.76910000  
C 0.06740000 -10.26020000 -0.90010000  
C 0.28570000 -7.86470000 -1.76100000  
C -4.21350000 -6.51100000 4.53590000  
C -3.30450000 -11.60320000 4.57350000  
C -0.79710000 -2.56910000 0.39310000  
C -4.27180000 -8.88570000 4.95570000  
C -4.64100000 -7.58060000 5.34370000  
C 1.09640000 -7.21100000 -2.72000000  
C -1.02710000 -3.75490000 1.11140000  
C -5.44670000 -7.36940000 6.64510000  
C -5.78490000 -5.88330000 6.91850000  
C -1.43510000 -10.49490000 3.36600000  
C 0.87170000 -8.94000000 -0.80300000  
C 0.83270000 -8.40610000 0.64510000  
C -0.26810000 -3.98840000 2.26860000  
C -4.63340000 -7.89310000 7.84910000  
C 2.34970000 -9.29380000 -1.11310000  
C 0.80680000 -1.84690000 1.97620000  
C 0.65840000 -3.03580000 2.69380000  
H -10.82240000 -6.46000000 -4.27940000  
H -9.13620000 -7.52770000 -5.97100000  
H -9.18230000 -5.12170000 -5.52250000  
H -10.34510000 -7.69840000 -3.08010000  
H -10.22270000 -5.95260000 -2.65740000  
H -8.70550000 -8.73520000 -4.72370000  
H -8.61260000 -4.43570000 -3.96940000  
H -7.41550000 -7.72780000 -5.47370000  
H -7.43390000 -5.17440000 -5.13440000  
H -8.45610000 -8.82250000 -2.45330000  
H -9.02530000 -10.17390000 -0.64600000  
H -7.97370000 -10.94530000 -1.91010000  
H -8.07040000 -11.64480000 -0.27280000  
H -6.60610000 -5.00050000 -2.97010000  
H -7.88090000 -8.91790000 1.36330000  
H -7.22770000 -10.56820000 1.65830000  
H -5.49570000 -10.77590000 -1.77660000  
H -5.00080000 -4.23150000 -1.55600000  
H -6.12290000 -9.18690000 1.63330000  
H -3.10190000 -1.36180000 -4.06300000  
H -5.57630000 -11.56270000 -0.15850000  
H -3.66310000 -3.46020000 -3.05620000  
H -5.07110000 -4.90010000 0.06750000  
H -3.60060000 -7.06980000 -2.63480000  
H -3.34860000 -5.46930000 -3.24780000  
H -4.67190000 -10.02880000 -0.38040000  
H -1.62500000 0.21430000 -2.92990000  
H -4.65970000 -11.07200000 2.16630000  
H -1.17540000 -5.02960000 -4.02500000  
H -3.17110000 -10.57180000 1.26880000  
H -3.25670000 -12.18220000 2.00270000  
H -7.36010000 -7.80550000 5.66340000  
H -0.92380000 -10.19470000 -0.41140000  
H -6.62230000 -9.23450000 6.47270000  
H -4.40220000 -11.75480000 4.66270000  
H -0.07420000 -10.54890000 -1.96380000  
H -7.40360000 -7.96310000 7.45830000  
H -2.85080000 -4.65810000 3.11800000  
H -6.37780000 -5.45240000 6.08270000  
H -2.85650000 -12.59310000 4.33700000  
H -4.39010000 -5.48450000 4.82190000  
H -4.55340000 -9.69280000 5.60850000  
H -1.10310000 -9.88190000 2.50660000  
H 0.59890000 -11.08970000 -0.38500000  
H -0.99960000 -11.50820000 3.22600000  
H -0.19670000 -8.17260000 0.97250000  
H -6.39000000 -5.78030000 7.84560000  
H 2.12410000 -7.50010000 -2.84520000  
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H -2.89100000 -11.28370000 5.55480000  
H -4.85950000 -5.28460000 7.06150000  
H 2.45230000 -9.69120000 -2.14620000  
H -1.00680000 -10.05560000 4.29280000  
H -0.36350000 -4.90920000 2.82880000  
H -4.45730000 -8.98680000 7.78190000  
H 1.24830000 -9.15530000 1.35340000  
H -5.17350000 -7.70290000 8.80200000  
H 1.43170000 -7.47340000 0.72910000  
H 2.72630000 -10.07440000 -0.41640000  
H 3.01030000 -8.40860000 -0.98680000  
H -3.64680000 -7.38340000 7.89900000  
H 1.50880000 -1.11630000 2.34310000  
H 1.25090000 -3.21240000 3.58210000  
N -3.41270000 -5.60470000 -1.07970000  
N -1.19920000 -1.10110000 -1.30520000  
N -2.50450000 -5.74440000 1.39100000  
N 0.06180000 -1.62500000 0.85130000  
O -4.92750000 -7.69530000 0.28780000  
O -1.94480000 -8.11120000 -0.79700000  
O -2.71150000 -8.26290000 1.64310000  
Ga -3.14240000 -7.09750000 0.22650000  
C 1.57810000 -5.46130000 -4.51420000  
C 2.81500000 -4.93730000 -3.74770000  
H 3.47220000 -4.33990000 -4.41560000  
H 2.49720000 -4.30060000 -2.89460000  
H 3.43750000 -5.76360000 -3.34760000  
C 0.93240000 -4.25540000 -5.23930000  
H 0.08660000 -4.58270000 -5.88180000  
H 0.56660000 -3.50480000 -4.50620000  
H 1.66960000 -3.75030000 -5.90060000  
C 2.03400000 -6.47100000 -5.58810000  
H 2.70810000 -5.98330000 -6.32540000  
H 2.58770000 -7.32170000 -5.13800000  
H 1.15510000 -6.87840000 -6.13310000  
Ga 0.01550000 0.00090000 -0.23630000  
C 9.33330000 -5.48890000 -3.68660000  
C 11.49760000 -4.44980000 -4.36500000  
C 9.36810000 -3.56450000 -5.31520000  
C 10.01440000 -4.14790000 -4.03890000  
C 9.83170000 -3.15340000 -2.86920000  
C 10.91540000 -2.59010000 -2.16180000  
C 13.31380000 -1.59620000 -0.83310000  
C 8.53560000 -2.78920000 -2.47630000  
C 10.73130000 -1.66350000 -1.10300000  
C 11.94630000 -1.02170000 -0.37740000  
C 11.85700000 -1.26310000 1.15030000  
C 8.31790000 -1.89070000 -1.42950000  
C 9.39760000 -1.29800000 -0.76360000  
C 11.97460000 0.49020000 -0.68290000  
C 6.91430000 -1.59020000 -0.98630000  
C 2.77090000 -1.47990000 -3.11960000  
C 3.98140000 -1.10520000 -2.54120000  
C 6.85340000 0.43750000 -2.41970000  
C 1.57430000 -1.19650000 -2.47290000  
C 4.00810000 -0.38420000 -1.32780000  
C 6.40380000 1.87290000 -2.50000000  
C 5.19940000 0.03630000 -0.63480000  
C 11.42090000 2.50540000 2.15560000  
C 5.41930000 2.26710000 -3.40850000  
C 2.74570000 -0.09530000 -0.73730000  
C 7.00940000 2.80940000 -1.65650000  
C 5.05450000 0.59840000 0.63410000  
C 10.47810000 -1.80040000 6.54730000  
C 5.04910000 3.62030000 -3.52820000  
C 8.64160000 1.18160000 2.90450000  
C 6.35860000 0.24190000 2.60750000  
C 7.63380000 0.30760000 3.34010000  
C 10.65310000 2.72010000 3.47490000  
C 9.71530000 1.51510000 3.77380000  
C 8.86760000 5.19820000 -0.89260000  
C 6.68560000 4.18760000 -1.75600000  
C 7.77480000 -0.39570000 4.53700000  
C 11.71490000 2.95590000 4.58060000  
C 2.64630000 0.58370000 0.39760000  
C 9.85570000 0.74950000 4.95820000  
C 8.91480000 -0.22820000 5.34430000  
C 5.71600000 4.56210000 -2.71700000  
C 3.78690000 0.97860000 1.11740000  
C 9.13980000 -1.03420000 6.64320000  
C 8.02690000 -2.07590000 6.91480000  
C 9.81450000 4.01490000 3.37730000  
C 7.32190000 5.23330000 -0.79740000  
C 6.87750000 4.93240000 0.65020000  
C 3.60700000 1.74840000 2.27710000  
C 9.18380000 -0.07130000 7.84990000  
C 6.88850000 6.68990000 -1.10810000  
C 1.21540000 1.60260000 1.98350000  
C 2.31780000 2.06900000 2.70310000  
H 9.49180000 -6.23630000 -4.49420000  
H 11.57750000 -5.16230000 -5.21480000  
H 9.52600000 -4.24140000 -6.18270000  
H 9.75450000 -5.89930000 -2.74330000  
H 8.23740000 -5.37140000 -3.55660000  
H 12.00880000 -4.91530000 -3.49460000  
H 8.27260000 -3.43080000 -5.19660000  
H 12.03600000 -3.52250000 -4.65830000  
H 9.81570000 -2.57620000 -5.55700000  
H 11.90910000 -2.87230000 -2.44700000  
H 13.36440000 -2.69130000 -0.64810000  
H 13.49960000 -1.39120000 -1.90970000  
H 14.14930000 -1.12430000 -0.27110000  
H 7.67910000 -3.21500000 -2.98150000  

H 11.69730000 -2.34270000 1.36000000  
H 12.79460000 -0.94830000 1.65790000  
H 12.09870000 0.65990000 -1.77440000  
H 6.19940000 -2.21040000 -1.55790000  
H 11.04550000 -0.68860000 1.63370000  
H 2.76210000 -2.01170000 -4.06110000  
H 12.81900000 0.98460000 -0.15590000  
H 4.85790000 -1.44110000 -3.05430000  
H 6.81000000 -1.93760000 0.06740000  
H 7.94600000 0.42800000 -2.63150000  
H 6.43520000 -0.15710000 -3.24480000  
H 11.03850000 0.99150000 -0.37730000  
H 0.65710000 -1.52560000 -2.92970000  
H 11.93780000 1.52410000 2.16970000  
H 4.96580000 1.50310000 -4.02170000  
H 10.75450000 2.55940000 1.27540000  
H 12.18870000 3.29600000 2.01010000  
H 10.47940000 -2.46460000 5.65590000  
H 9.30660000 4.30760000 -0.40290000  
H 11.34300000 -1.10950000 6.46780000  
H 12.39920000 2.08410000 4.66690000  
H 9.18970000 5.21960000 -1.95600000  
H 10.63970000 -2.42770000 7.45070000  
H 5.48650000 -0.14820000 3.12090000  
H 7.95250000 -2.80290000 6.07710000  
H 12.34380000 3.84250000 4.34600000  
H 6.97750000 -1.06630000 4.82180000  
H 10.69530000 0.91120000 5.61060000  
H 9.11690000 3.99480000 2.51850000  
H 9.31880000 6.07380000 -0.37740000  
H 10.47000000 4.90220000 3.23880000  
H 7.19020000 3.92440000 0.97810000  
H 8.24370000 -2.65300000 7.84010000  
H 5.45300000 5.59660000 -2.84380000  
H 11.23120000 3.14930000 5.56270000  
H 7.04360000 -1.57860000 7.06020000  
H 7.18300000 6.97780000 -2.14070000  
H 9.22010000 4.16110000 4.30500000  
H 4.45080000 2.12690000 2.83870000  
H 10.03980000 0.63200000 7.78380000  
H 7.31730000 5.66730000 1.35900000  
H 9.29270000 -0.63640000 8.80100000  
H 5.77020000 4.98430000 0.73290000  
H 7.37430000 7.40670000 -0.41050000  
H 5.79130000 6.81830000 -0.98390000  
H 8.24660000 0.52400000 7.90260000  
H 0.23080000 1.84150000 2.35060000  
H 2.17240000 2.66710000 3.59340000  
N 6.58540000 -0.14760000 -1.07670000  
N 1.57940000 -0.49720000 -1.30380000  
N 6.24990000 0.70230000 1.39560000  
N 1.39820000 0.85090000 0.85610000  
O 9.15530000 -0.40700000 0.29020000  
O 8.01460000 2.38080000 -0.79000000  
O 8.52900000 1.79170000 1.64930000  
Ga 7.74000000 0.83460000 0.23090000  
C 3.96380000 4.10310000 -4.51470000  
C 2.89160000 4.91610000 -3.75220000  
H 2.04590000 5.18410000 -4.42150000  
H 2.49860000 4.32660000 -2.89650000  
H 3.29610000 5.87010000 -3.35620000  
C 3.24170000 2.94020000 -5.23810000  
H 3.94790000 2.36950000 -5.87900000  
H 2.77350000 2.25000000 -4.50400000  
H 2.43660000 3.32570000 -5.90080000  
C 4.61370000 4.99900000 -5.58960000  
H 3.85610000 5.33890000 -6.32880000  
H 5.07490000 5.90380000 -5.14070000  
H 5.40560000 4.43870000 -6.13220000  
C -0.79420000 12.11280000 -3.43930000  
C -2.48030000 11.20710000 -5.08180000  
C -0.34760000 9.98370000 -4.66110000  
C -1.45640000 10.82980000 -3.98830000  
C -2.17800000 10.08810000 -2.83990000  
C -3.21390000 10.73290000 -2.13570000  
C -5.28440000 12.30180000 -0.82150000  
C -1.83960000 8.78020000 -2.45400000  
C -3.92890000 10.10460000 -1.08560000  
C -5.09910000 10.83000000 -0.36690000  
C -4.85700000 10.87010000 1.16250000  
C -2.51520000 8.13560000 -1.41320000  
C -3.57540000 8.76730000 -0.75030000  
C -6.41820000 10.09570000 -0.68420000  
C -2.07200000 6.76940000 -0.97100000  
C -0.07420000 3.13760000 -3.10810000  
C -1.00810000 3.99480000 -2.53060000  
C -3.78480000 5.70190000 -2.41880000  
C 0.27840000 1.95820000 -2.46400000  
C -1.65100000 3.65150000 -1.32150000  
C -4.79870000 4.59160000 -2.50980000  
C -2.61680000 4.46780000 -0.63080000  
C -7.90050000 8.58950000 2.13780000  
C -4.63960000 3.54720000 -3.42310000  
C -1.26910000 2.41310000 -0.73320000  
C -5.91810000 4.64080000 -1.67340000  
C -3.03570000 4.05650000 0.63510000  
C -3.74230000 9.92430000 6.57100000  
C -5.62390000 2.54900000 -3.55530000  
C -5.36290000 6.85270000 2.89950000  
C -3.39750000 5.35690000 2.61040000  
C -4.10310000 6.42160000 3.34250000  
C -7.70980000 7.81280000 3.45570000  
C -6.19890000 7.60810000 3.76570000  

C -8.92210000 5.04440000 -0.92690000  
C -6.94700000 3.66970000 -1.78490000  
C -3.57620000 6.89240000 4.54580000  
C -8.45700000 8.60710000 4.55860000  
C -1.81020000 1.98310000 0.39880000  
C -5.61780000 8.10970000 4.95720000  
C -4.30220000 7.78810000 5.35210000  
C -6.77850000 2.64890000 -2.75120000  
C -2.72810000 2.76870000 1.11670000  
C -3.73020000 8.38190000 6.65880000  
C -2.27190000 7.94420000 6.94020000  
C -8.40550000 6.43680000 3.34710000  
C -8.17690000 3.68970000 -0.83390000  
C -7.70250000 3.44910000 0.61550000  
C -3.30760000 2.22320000 2.27280000  
C -4.59400000 7.92810000 7.85610000  
C -9.21670000 2.58490000 -1.15680000  
C -1.97680000 0.23080000 1.98050000  
C -2.93730000 0.94720000 2.69790000  
H -0.22590000 12.63630000 -4.23870000  
H -1.97580000 11.69790000 -5.94230000  
H 0.13880000 10.55260000 -5.48340000  
H -1.54610000 12.82870000 -3.04710000  
H -0.08950000 11.86170000 -2.61720000  
H -3.24620000 11.91470000 -4.70200000  
H 0.44580000 9.71550000 -3.93020000  
H -2.99980000 10.29760000 -5.45390000  
H -0.77040000 9.05600000 -5.10420000  
H -3.45740000 11.73700000 -2.43260000  
H -4.36380000 12.89440000 -0.62840000  
H -5.54570000 12.36140000 -1.90030000  
H -6.11630000 12.78690000 -0.26540000  
H -1.04100000 8.24460000 -2.94420000  
H -3.84560000 11.27560000 1.38090000  
H -5.60520000 11.51990000 1.66630000  
H -6.61930000 10.12080000 -1.77720000  
H -1.17230000 6.46430000 -1.53650000  
H -4.94750000 9.87790000 1.64190000  
H 0.39380000 3.40000000 -4.04680000  
H -7.27370000 10.57590000 -0.16200000  
H -1.15450000 4.92370000 -3.04040000  
H -1.72660000 6.85090000 0.08540000  
H -4.32510000 6.65160000 -2.63020000  
H -3.05570000 5.64310000 -3.23970000  
H -6.38300000 9.03360000 -0.38130000  
H 1.02490000 1.33100000 -2.91990000  
H -7.31250000 9.52980000 2.15990000  
H -3.74740000 3.54190000 -4.03080000  
H -7.60530000 7.98980000 1.25760000  
H -8.96880000 8.85600000 1.98520000  
H -3.16200000 10.26500000 5.68620000  
H -8.37580000 5.86870000 -0.42910000  
H -4.77430000 10.32350000 6.48510000  
H -8.04880000 9.63690000 4.65240000  
H -9.09540000 5.31780000 -1.98990000  
H -3.28950000 10.37530000 7.48060000  
H -2.62400000 4.79910000 3.12710000  
H -1.59960000 8.25100000 6.10970000  
H -9.53770000 8.70520000 4.31550000  
H -2.59720000 6.54090000 4.83640000  
H -6.18590000 8.75010000 5.60820000  
H -8.02990000 5.84750000 2.48900000  
H -9.90930000 4.99210000 -0.41850000  
H -9.50090000 6.55690000 3.20020000  
H -6.98940000 4.22370000 0.95170000  
H -1.89050000 8.41740000 7.87130000  
H -7.54110000 1.90380000 -2.88790000  
H -8.38870000 8.08780000 5.53920000  
H -2.20690000 6.84350000 7.08020000  
H -9.60770000 2.70080000 -2.19100000  
H -8.23990000 5.84590000 4.27390000  
H -4.06200000 2.76030000 2.83240000  
H -5.63220000 8.31340000 7.78360000  
H -8.56320000 3.45720000 1.31900000  
H -4.16860000 8.30190000 8.81280000  
H -7.19220000 2.46480000 0.69640000  
H -10.08450000 2.64100000 -0.46380000  
H -8.77710000 1.57110000 -1.03580000  
H -4.63620000 6.81840000 7.90250000  
H -1.68960000 -0.74080000 2.34720000  
H -3.38440000 0.51890000 3.58560000  
N -3.15260000 5.75960000 -1.07170000  
N -0.33400000 1.60780000 -1.29860000  
N -3.73220000 5.03470000 1.39530000  
N -1.41540000 0.76880000 0.85580000  
O -4.22980000 8.10570000 0.29710000  
O -6.05830000 5.72110000 -0.80270000  
O -5.82410000 6.45270000 1.63950000  
Ga -4.59020000 6.25850000 0.22900000  
C -5.49150000 1.37460000 -4.54900000  
C -5.66760000 0.03410000 -3.79790000  
H -5.46830000 -0.82760000 -4.47080000  
H -4.97090000 -0.01700000 -2.93410000  
H -6.70060000 -0.09610000 -3.41520000  
C -4.11680000 1.33480000 -5.26020000  
H -3.96970000 2.23540000 -5.89460000  
H -3.29170000 1.27020000 -4.51880000  
H -4.04200000 0.44880000 -5.92750000  
C -6.58250000 1.49850000 -5.63280000  
H -6.49280000 0.67720000 -6.37660000  
H -7.60060000 1.44440000 -5.19290000  
H -6.48690000 2.46800000 -6.16810000 
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5. Infrared spectroscopy.  

          IR spectrum for [FeII(phen)3](PF6)2 

 
              IR spectrum for [FeIIIL2] 

 

 
IR spectrum for [FeII(FeIIIL2)3] (PF6)2  
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6. UV–visible spectroscopy.  
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 [FeII(phen)3\-]
2+(PF6)2 (core)

 [FeIII(Lphen10)] (module)
 [FeII(FeIII(Lphen10)]2+(PF6)2 (cluster))

  All solutions 5.0 x 10-6 M DCM

 

  λ (nm) / ε (Lmol-1cm-1)a 
H3L1 252 (22 800), 280 (30 700), 319 (7800) 
[FeII(FeIII(L2)3](PF6)2 279 (249 690), 336 (95 900), 486 (50 260), 525 (51 750) 
[FeIII(L2)] 281 (115 880), 333 (68 870), 411 (27 520), 463 (27 500) 
[FeII(phen)3](PF6)2 268 (86 220), 292 (25 490), 476 (8010), 511 (9390) 
 

 

7. Electrochemistry.  

 Process (vs Fc+/Fc) 
Fe(phen)3](PF6)2 N/A 0.77V (ΔE 0.08V) 
[Fe(L2)] –1.37V (ΔE 0.25V) 0.64V (ΔE 0.06V) 
[FeII(FeIII(L2)](PF6)2 –1.24V (ΔE 0.33V) 0.64V (ΔE 0.13V) 
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APPENDIX C 

Supplementary Information for Chapter 5 

 

Figure B.5.1. ESI+ pertinent peak clusters with experimental (bars) and simulated 
(continuum) isotopic distributions for 1 

 

 

 

 

 

 

 

 

 



www.manaraa.com

183 
 

 

 

Figure B.5.2. ESI+ pertinent peak clusters with experimental (bars) and 
simulated (continuum) isotopic distributions for 2 
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Figure B.5.3. ESI+ peak cluster with experimental (bars) and 
simulated (continuum) isotopic distributions for 3 
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Figure B.5.4. ESI+ peak cluster with experimental (bars) and simulated 
(continuum) isotopic distributions for 4 
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Figure B.5.5. ESI+ results of photosubstitution experiment  
in acetonitrile at cone 5 V 
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Figure B.5.6. UV–visible  spectra recorded for photostability of 2 in DCM 
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Figure B.5.7. Representative models 1’, 2’, 3’, and 4’ comprised of 
shortened propyl chains 
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Table B.5.1. Orbital Compositions and Energies 

Ru(Bpy)2 PyImine 
(1')           
rb3lyp/lanl2dz 
(MeCN)       Population   

  Orbital 
Energy 
(eV) % Ru %L % Bpy 

132 LUMO+2 -2.7 6.1 0.7 93.2 
131 LUMO+1 -2.8 6.2 21.8 72.0 
130 LUMO -2.9 2.8 69.9 27.3 
129 HOMO -6.2 82.5 6.1 11.4 
128 HOMO-1 -6.3 75.6 3.9 20.5 
127 HOMO-2 -6.4 74.2 14.0 11.8 
126 HOMO-3 -7.6 0.3 0.8 98.9 

      
Ru(Bpy)2 PyAmine 
(2')           
rb3lyp/lanl2dz 
(MeCN)       Population   

  Orbital 
Energy 
(eV) % Ru %L % Bpy 

133 LUMO+2 -2.0 1.2 22.3 76.5 
132 LUMO+1 -2.7 6.7 0.4 92.9 
131 LUMO -2.8 2.5 0.5 97.0 
130 HOMO -6.0 81.4 5.2 13.4 
129 HOMO-1 -6.2 80.3 5.8 13.9 
128 HOMO-2 -6.2 80.7 1.8 17.5 
127 HOMO-3 -7.5 0.3 0.0 99.7 

      
Ru(Bpy)2 Cl Imine 
(4')           
rb3lyp/lanl2dz 
(MeCN)       Population   

  Orbital 
Energy 
(eV) % Ru %L % Bpy 

  LUMO+2 -2.0 2.8 92.4 4.8 
  LUMO+1 -2.5 6.3 16.0 77.7 
  LUMO -2.5 4.1 0.9 95.0 
  HOMO -5.4 48.8 43.1 8.1 
  HOMO-1 -5.6 78.7 7.4 13.9 
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  HOMO-2 -5.9 74.2 10.3 15.5 
  HOMO-3 -6.5 31.1 61.4 7.5 
      
Ru(Bpy)2 POH 
tbutyl Imine (3')           
rb3lyp/lanl2dz 
(MeCN)       Population   

  Orbital 
Energy 
(eV) % Ru %L % Bpy 

  LUMO+2 -1.7 1.6 1.2 97.2 
  LUMO+1 -2.4 7.5 0.8 91.7 
  LUMO -2.5 3.9 0.2 95.9 
  HOMO -4.9 31.2 63.4 5.4 
  HOMO-1 -5.4 76.3 10.6 13.1 
  HOMO-2 -5.7 69.2 15.4 15.4 
  HOMO-3 -6.0 46.3 44.8 8.9 
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Figure B.5.8. Relative Molecular Orbital Energies for 2’ and 4’ 
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Figure B.5.9. Percent compositions of representative MOs for 2’ and 4’ 
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Figure B.5.10. Correlation between the differences between the half-
wave potentials for oxidation and reduction and the differences 
between the DFT-calculated HOMO−LUMO energies 
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Table B.5.2. Cartesian Coordinates and 
Energies of the Optimized Structures 
 

(1’) E:-1543.468381 a.u. 
 C                 -2.05530900    1.67421500    1.64910500 
 C                  1.15699200    4.07166300   -1.28158600 
 C                 -0.50760900    2.92210400    0.22605500 
 H                  2.66855700    4.83670200   -2.63420400 
 N                 -0.92679200    1.77114300    0.68459400 
 C                  0.59327100    2.90802400   -0.73198600 
 C                  2.21694300    3.95270000   -2.19647200 
 N                  1.05136200    1.64899300   -1.06760100 
 C                  2.68124400    2.66691600   -2.53402500 
 H                  3.49717500    2.52975400   -3.23494400 
 C                  2.07811100    1.54060200   -1.95146000 
 H                  2.41348100    0.54002600   -2.19344100 
 Ru                 0.06026500    0.09120100   -0.06962900 
 C                 -2.25471600   -1.73719000    0.19553600 
 C                 -0.86775400   -1.89743800    2.10059000 
 C                 -3.12237600   -2.71075700    0.72293100 
 C                 -2.46204800   -1.06767500   -1.10407100 
 C                 -1.69811200   -2.86856700    2.67464500 
 H                  0.02177300   -1.55198100    2.61036600 
 C                 -2.84519200   -3.28417400    1.97330400 
 H                 -4.00197700   -3.02020800    0.17192400 
 C                 -3.55968200   -1.31355200   -1.94868600 
 H                 -1.44550100   -3.28374200    3.64380700 
 H                 -3.50804700   -4.03572800    2.38909200 
 C                 -1.60727000    0.52313200   -2.62931400 
 C                 -3.67245900   -0.61739800   -3.16221300 
 H                 -4.31801900   -2.03436400   -1.66896100 
 C                 -2.67885100    0.31760900   -3.50768800 
 H                 -0.82182900    1.22996700   -2.86177800 
 H                 -4.51509500   -0.80037800   -3.82070900 
 H                 -2.72628000    0.87817000   -4.43445100 
 N                 -1.49281600   -0.15260500   -1.45340100 
 N                 -1.13339700   -1.33860500    0.88908800 
 C                  2.39030600   -1.74624800   -0.05916700 
 C                  0.98597800   -2.22480000   -1.89694200 
 C                  3.25748800   -2.79164400   -0.42625600 
 C                  2.60596500   -0.87103400    1.10982600 
 C                  1.81610100   -3.27414100   -2.31094900 
 H                  0.09038600   -1.97292000   -2.44902500 
 C                  2.97148900   -3.56465100   -1.56192000 
 H                  4.14222200   -3.00382600    0.16131900 
 C                  3.72211300   -0.96032600    1.96154600 
 H                  1.55672800   -3.84440200   -3.19582600 
 H                  3.63357700   -4.37279700   -1.85450400 
 C                  1.75203200    0.93566400    2.37047500 
 C                  3.84327400   -0.07501600    3.04344700 
 H                  4.48911400   -1.70449000    1.78609800 
 C                  2.84047700    0.89025600    3.25051000 
 H                  0.96383300    1.66589600    2.49679200 
 H                  4.70008100   -0.13537500    3.70624700 
 H                  2.89442200    1.59568900    4.07202100 
 N                  1.26003300   -1.47187200   -0.79682000 
 N                  1.62762100    0.07519200    1.32299000 
 H                 -1.69408200    1.07384800    2.49422100 
 H                 -2.83437100    1.07698800    1.15699300 
 C                 -2.65829600    2.99180500    2.16367500 
 H                 -3.05958500    3.58024900    1.32667600 
 H                 -1.88157600    3.59901200    2.64988500 
 C                 -3.79077300    2.70755400    3.17314700 
 H                 -4.22336200    3.64542400    3.54126700 
 H                 -4.59707200    2.12323300    2.71026100 
 H                 -3.41738800    2.14510600    4.03893800 
 H                  0.76987000    5.04354200   -0.99366500 
 H                 -0.93875800    3.87222500    0.52497300 

 
 

(2’) E:-1544.651099 a.u. 
 C                 -2.48355500    1.11105900    1.61105500 
 C                  0.59029800    4.32466400   -0.74231300 
 C                 -1.16957200    2.81088200    0.31545000 
 H                  2.15475400    5.45735400   -1.72813300 
 N                 -1.11478200    1.55507500    1.14777400 
 C                  0.14912700    3.04143800   -0.38609000 
 C                  1.80160400    4.47223900   -1.44048400 
 N                  0.88385900    1.92354100   -0.68941000 
 C                  2.54851000    3.32104100   -1.75331700 
 H                  3.48934900    3.38534700   -2.28859900 
 C                  2.06411900    2.06865700   -1.35717900 
 H                  2.61410200    1.16353500   -1.57809800 
 Ru                 0.09860000    0.10144400    0.01798400 
 C                 -2.01821400   -1.96496100   -0.06693000 
 C                 -0.57936400   -2.34673400    1.76658300 
 C                 -2.79361700   -3.08474900    0.28563700 
 C                 -2.29742800   -1.10766600   -1.23513800 
 C                 -1.31505600   -3.47079100    2.16279600 
 H                  0.29186500   -2.02763600    2.32289900 
 C                 -2.44366800   -3.84649500    1.41067800 
 H                 -3.65919700   -3.36275300   -0.30332100 
 C                 -3.35386800   -1.33053200   -2.13766700 
 H                 -1.00583800   -4.03130100    3.03793300 
 H                 -3.03592300   -4.71082200    1.69230600 
 C                 -1.58720300    0.76594200   -2.48775400 
 C                 -3.52355700   -0.47453600   -3.23635000 
 H                 -4.03311100   -2.16116800   -1.99187300 
 C                 -2.61901500    0.58910800   -3.41697300 
 H                 -0.86466300    1.56341500   -2.60222500 
 H                 -4.33541200   -0.63769500   -3.93724800 
 H                 -2.70433300    1.26889200   -4.25724600 
 N                 -1.42688600   -0.05229100   -1.40951800 
 N                 -0.91857100   -1.60039800    0.67991200 
 C                  2.61106400   -1.41605100   -0.36749300 
 C                  1.20169100   -1.66856400   -2.24475700 
 C                  3.57509600   -2.25458000   -0.95779700 
 C                  2.77155900   -0.78941200    0.95793300 
 C                  2.12584900   -2.50741700   -2.87872600 
 H                  0.26466700   -1.41554200   -2.72046200 
 C                  3.33516700   -2.80767000   -2.22415100 
 H                  4.50081400   -2.47665100   -0.44168600 
 C                  3.92207700   -0.94776300    1.75317900 
 H                  1.89671100   -2.91117100   -3.85852100 
 H                  4.07215000   -3.45517000   -2.68735600 
 C                  1.78490400    0.56673800    2.61148600 
 C                  3.99574200   -0.32572500    3.00763100 
 H                  4.75244000   -1.54752300    1.40199000 
 C                  2.90299300    0.44486800    3.44513900 
 H                  0.93544700    1.14854000    2.94157000 
 H                  4.87903500   -0.44115500    3.62678000 
 H                  2.90837400    0.94221600    4.40843300 
 N                  1.42987300   -1.12848100   -1.01524100 
 N                  1.70460500   -0.02623800    1.38833000 
 H                 -2.34053000    0.18002100    2.16841500 
 H                 -3.07945300    0.88615500    0.72051100 
 C                 -3.21902600    2.13171200    2.50267100 
 H                 -3.44408100    3.04507900    1.93678600 
 H                 -2.56820000    2.42109200    3.34166600 
 C                 -4.53364700    1.53845300    3.05240700 
 H                 -5.05526700    2.26916500    3.68221500 
 H                 -5.21093200    1.25339000    2.23616800 
 H                 -4.34015600    0.64494800    3.66075100 
 H                 -0.00848900    5.19002200   -0.47758500 
 H                 -1.96949300    2.67799100   -0.42266200 
 H                 -1.42815600    3.68411100    0.92271300 
 H                 -0.57960100    1.77639100    1.99249000 
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(3’) E: -1916.415343 a.u. 

 C                  1.04286900   -2.95798900    0.99216300 
 C                 -3.51702800   -1.55141900    0.34482800 
 C                 -1.13701300   -1.98927800    0.55566400 
 N                  0.16501000   -1.81410000    0.58562100 
 C                 -2.18998400   -1.05962100    0.17794600 
 C                 -4.64439100   -0.79432300    0.02312200 
 C                 -4.40566700    0.50777000   -0.49607300 
 H                 -5.26426400    1.11346800   -0.75224400 
 C                 -3.13085200    1.05914100   -0.69863400 
 Ru                 1.10853500   -0.01454400    0.05931500 
 C                  3.64651200   -1.28033400   -0.74897600 
 C                  3.77122100   -0.55641700    1.49697700 
 C                  4.98147300   -1.72282200   -0.69869600 
 C                  2.78799800   -1.38459000   -1.94380400 
 C                  5.10126600   -0.97973600    1.60188100 
 H                  3.26141200   -0.09645500    2.33396600 
 C                  5.72011100   -1.57499400    0.48477400 
 H                  5.44124700   -2.17328400   -1.57047200 
 C                  3.17326400   -1.99207100   -3.15365600 
 H                  5.63368300   -0.84380100    2.53696100 
 H                  6.75021900   -1.91235600    0.53443600 
 C                  0.65733800   -0.87277500   -2.83977600 
 C                  2.26755800   -2.03533100   -4.22509600 
 H                  4.15972100   -2.42739200   -3.26104500 
 C                  0.98850400   -1.46533400   -4.06482600 
 H                 -0.30488200   -0.41088300   -2.65766100 
 H                  2.55217200   -2.50209000   -5.16254600 
 H                  0.26100900   -1.47776200   -4.86918300 
 N                  1.53431500   -0.83180100   -1.79984900 
 N                  3.04670900   -0.69858000    0.35126500 
 C                  1.74493600    2.79072900    0.73714300 
 C                  2.42020000    2.31936200   -1.47562500 
 C                  2.17006200    4.12630100    0.60060900 
 C                  1.15715100    2.23551600    1.97115200 
 C                  2.86065900    3.63490800   -1.66787600 
 H                  2.49293400    1.58456000   -2.26696100 
 C                  2.73200300    4.55658800   -0.61071100 
 H                  2.06564500    4.82335200    1.42330800 
 C                  0.95693500    2.98027900    3.14923600 
 H                  3.28879700    3.92374600   -2.62150500 
 H                  3.06098000    5.58415800   -0.72700200 
 C                  0.28844700    0.30140600    3.01288100 
 C                  0.40764800    2.35918300    4.28058900 
 H                  1.22459600    4.02939300    3.18763300 
 C                  0.06956800    0.99332700    4.20993200 
 H                  0.03515100   -0.74594300    2.91396800 
 H                  0.24820700    2.92439400    5.19309000 
 H                 -0.35791200    0.47197100    5.05946500 
 N                  1.87164000    1.89913300   -0.30404800 
 N                  0.81936600    0.90014700    1.90986800 
 H                  1.68016500   -2.59708000    1.80964500 
 H                  1.71007200   -3.16422000    0.14513300 
 C                  0.37799100   -4.27673500    1.42899800 
 H                 -0.22869300   -4.69295100    0.61233700 
 H                 -0.29502500   -4.10269000    2.28079300 
 C                  1.45233600   -5.30842700    1.83578900 
 H                  0.98613700   -6.25143500    2.14656900 
 H                  2.12928600   -5.52722500    0.99888200 
 H                  2.05869000   -4.93967500    2.67410300 
 H                 -3.63328200   -2.55907700    0.74086300 
 H                 -1.52051200   -2.96247200    0.86049500 
 C                 -1.97267300    0.26151800   -0.35264400 
 O                 -0.74254500    0.75334400   -0.55250200 
 C                 -6.06566300   -1.37333500    0.22694100 
 C                 -2.96928100    2.48810500   -1.27776800 
 C                 -4.33280500    3.17027000   -1.57138500 
 H                 -4.94206600    3.28534500   -0.66501700 
 H                 -4.14736300    4.17429700   -1.97475100 

 H                 -4.92051300    2.61728200   -2.31619600 
 C                 -2.20968100    3.39168000   -0.26152600 
 H                 -1.22771600    2.97187600   -0.03230500 
 H                 -2.07645200    4.39910400   -0.68103500 
 H                 -2.78022400    3.48623800    0.67320100 
 C                 -2.18265000    2.43398800   -2.62163200 
 H                 -1.19436800    1.99221000   -2.47329300 
 H                 -2.72868500    1.83699700   -3.36551200 
 H                 -2.05947800    3.44902800   -3.02520800 
 C                 -7.17762500   -0.37118600   -0.17438000 
 H                 -7.13442600    0.54762900    0.42524900 
 H                 -7.11387400   -0.09351100   -1.23471500 
 H                 -8.16059400   -0.83097100   -0.00922300 
 C                 -6.23671400   -2.65598500   -0.64042500 
 H                 -5.49773200   -3.42285700   -0.37678300 
 H                 -7.23668800   -3.08685600   -0.49273600 
 H                 -6.11791600   -2.42335600   -1.70710900 
 C                 -6.27180300   -1.74519900    1.72563300 
 H                 -7.27308700   -2.17105600    1.87831700 
 H                 -5.53639400   -2.48596200    2.06324100 
 H                 -6.17577700   -0.85711100    2.36449800 
 

(4’) E: -1630.883151 a.u. 
 C                  0.65798800   -2.70536200    1.36590700 
 C                 -3.92946200   -1.59265300    0.36528500 
 C                 -1.54035000   -1.91441800    0.73345700 
 N                 -0.25184400   -1.67215900    0.77048200 
 C                 -2.60963800   -1.08884600    0.18465800 
 C                 -5.02352500   -0.89868900   -0.13138600 
 C                 -4.86987800    0.31398800   -0.83261300 
 H                 -5.72778100    0.85289000   -1.21946900 
 C                 -3.57992100    0.80042700   -1.01327800 
 Ru                 0.64585600    0.07803900    0.01811200 
 C                  3.26247400   -1.18422000   -0.47084800 
 C                  3.24369400   -0.11573300    1.63737500 
 C                  4.60717100   -1.55627900   -0.28963400 
 C                  2.47360800   -1.50208300   -1.67649000 
 C                  4.58020500   -0.46149200    1.86942300 
 H                  2.67514900    0.44837400    2.36558900 
 C                  5.27637800   -1.19636800    0.88984900 
 H                  5.12824700   -2.11516100   -1.05784800 
 C                  2.94434200   -2.26829900   -2.75892700 
 H                  5.05785200   -0.15931000    2.79495000 
 H                  6.31336700   -1.47836900    1.03963300 
 C                  0.38672300   -1.20155100   -2.75283000 
 C                  2.10423900   -2.50015800   -3.85943700 
 H                  3.94633100   -2.68035100   -2.74699600 
 C                  0.80480500   -1.95523800   -3.85704600 
 H                 -0.59663300   -0.75087100   -2.70071500 
 H                  2.45518500   -3.09053400   -4.69958800 
 H                  0.12725400   -2.10855600   -4.68979000 
 N                  1.19810800   -0.98113900   -1.68323100 
 N                  2.58691400   -0.46621700    0.49626500 
 C                  1.05500500    2.98982000    0.25045300 
 C                  1.93358400    2.21202700   -1.79872500 
 C                  1.38066700    4.31579600   -0.09308000 
 C                  0.43328300    2.60071000    1.53134700 
 C                  2.28462500    3.51021100   -2.19035500 
 H                  2.12499000    1.36390000   -2.44309200 
 C                  1.99956200    4.58266900   -1.32361700 
 H                  1.15727200    5.13015200    0.58552100 
 C                  0.10349400    3.51252400    2.55185800 
 H                  2.76348700    3.67000100   -3.15008200 
 H                  2.25342400    5.60118200   -1.59893600 
 C                 -0.32248700    0.79855400    2.85842000 
 C                 -0.45312900    3.04321000    3.75104900 
 H                  0.27848000    4.57311800    2.41766700 
 C                 -0.66527300    1.65972500    3.90787100 
 H                 -0.47668100   -0.26973700    2.93559800 
 H                 -0.71205100    3.73794100    4.54333600 
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 H                 -1.08979300    1.25205600    4.81870000 
 N                  1.32905200    1.95030800   -0.60890800 
 N                  0.21113800    1.24992500    1.68948200 
 H                  1.25891000   -2.19346400    2.12713600 
 H                  1.35161700   -3.00975200    0.57190300 
 C                  0.03113800   -3.96772600    1.98560300 
 H                 -0.54024400   -4.52634100    1.23100300 
 H                 -0.66610700   -3.69577700    2.79083300 
 C                  1.13546700   -4.88266300    2.55838200 
 H                  0.69818900   -5.78654500    2.99951800 
 H                  1.83660500   -5.19575300    1.77316100 
 H                  1.70988400   -4.36917600    3.34095100 
 H                 -4.07052400   -2.52883000    0.89816500 
 H                 -1.89898600   -2.84768300    1.16391800 
 C                 -2.39768500    0.14944800   -0.52634900 
 O                 -1.21007100    0.68243000   -0.75650500 
 Cl                -3.37503800    2.36861100   -1.92289800 
 Cl                -6.71030100   -1.56070300    0.11804500 
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1. Synthesis of [Mn(HL)2].  

A 25 mL acetonitrile solution of the ligand H4L (0.517 g, 1 mmol) was treated with 

MnCl2·4H2O (0.198 g, 1 mmol) and triethylamine (0.2 mL). At room temperature in the 

presence of air the resulting solution was stirred for 2 h. A dark brown microcrystalline 

solid was isolated from the solution and washed with acetonitrile. A 
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dichloromethane/acetonitrile (1:1) solvent mixture yielded X−ray quality crystals after 

slow solvent evaporation. Yield: 41%. Elemental anal. calcd for [C68H90MnN4O4]: C, 

75.45, H, 8.38, N, 5.18 %. Found: C, 75.26, H, 8.40, N, 5.12 %. IR data (KBr, cm-1): 

2956, 2906, 2868, 1580, 1532, 1466, 1442, 1362, 1309, 1244, 1145, 993, 739, 600. 

UV−visible data (DCM, 1.0 x 10-5 M): 279 (27,150); 349 sh (19,360); 433 (13,040); 584 

(8,310); 856 (8,740). MS data (ESI+ in CH2Cl2): m/z = 1082.61 (100%) for [M + H]+ and 

1104.61 (100%) for [M + Na]+. 

2. X−ray Structure Determination and Molecular Structure.  

Diffraction data were measured on a Bruker X8 APEX-II kappa geometry diffractometer 

with Mo radiation and a graphite monochromator. Frames were collected at 100 K with 

the detector at 40 mm and 0.3 degrees between each frame and were recorded for 10 s. 

APEX-II2 and SHELX3 software were used in the collection and refinement of the models. 

Crystals of [LSCoIII(L’1–)(L’2–)]·2CH3CN were dark flat rods. The 206545 counted 

reflections were averaged to 20497 independent data (Rint = 0.16). Table D.6.1 shows the 

collected crystal data. Hydrogen atoms were placed at calculated positions. The 

asymmetric consists of one cobalt complex and two molecules of acetonitrile. The 

ORTEP diagram is presented in Figure D.6.1, and selected bond lengths and angles are 

listed in Table D.6.2. All of the dark rods of crystalline [Mn(HL)2] were grown together 

without integrity. Table D.6.3 shows the collected crystal data. The selected sample was 

solved with inclusion of a 35% twin domain rotated 180 degrees about the (001) 

reciprocal axis. Measured were 79526 spots, resulting in 34280 data points after 

averaging (Rint = 0.105). Hydrogen atoms were added in calculated positions. A 

disordered t-butyl group (C58-C60) was modeled at 2 partial occupancy sites and held 



www.manaraa.com

199 
 

 

isotropic. The ORTEP diagram is presented in Figure D.6.2, and selected bond lengths 

and angles are listed in Table D.6.4. 

 

Table D.6.1. Crystal Data for [LSCoIII(L’1–)(L’2–)]•2CH3CNa 

  
Formula C72H92CoN6O4  
M 1164.45  
Space 
group 

P(21)/c  

a / Å 14.4521(7)  
b/ Å 37.2455(2)  
c/ Å 12.8352(6)  
α/ o   
β/ o 104.197(2)  
γ/ o   
V/ Å3 6697.9(5)  
Z 4  
T/ K 100(2)  
λ/ Å 0.71073  
Dcalc/ g cm-

3 
1.155  

µ/ mm-1 0.307  
R(F) (%) 6.16  
Rw(F) (%) 11.58  

 

a R(F) = ∑║Fo│-│Fc║ ∕ ∑│Fo│ for I > 2s(I); Rw(F) = [∑w(Fo
2 – Fc

2)2 / ∑w(Fo
2)2]1/2 for I > 2s(I). 
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Figure D.6.1. Perspective view ORTEP diagram of [LSCoIII(L’1–)(L’2–)] showing 50% 
probability of the thermal ellipsoids. Solvents and hydrogen atoms are excluded for 
clarity. 
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Table D.6.2. Selected bond distances (Å) and angles (o) for [LSCoIII(L’1–)(L’2–)]. 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ LSCoIII(L’1–)(L’2–)]·2CH3CN 

 
    Co1-N1                     1.876(2)  
    Co1-N3                     1.887(2)  
    Co1-O1                     1.892(2)  
    Co1-O3                     1.899(2)  
    Co1-N2                     1.953(2)  
    Co1-N4                     1.956(2)  
    C1-C2                       1.416(3)                C35-C36                   1.422(3)  
    C2-C3                       1.389(3)                C36-C37                   1.377(3) 
    C3-C4                       1.411(3)                C37-C38                   1.413(3)  
    C4-C5                       1.380(3)                C38-C39                   1.375(3) 
    C5-C6                       1.410(3)                C39-C40                   1.410(3) 
    C1-C6                       1.413(3)                C35-C40                   1.421(3) 
    N1-C6                       1.382(3)                N3-C40                     1.377(3) 
    O1-C1                       1.334(3)                O3-C35                     1.318(3)  
    N1-C15                     1.353(3)                N3-C49                     1.345(3)  
    C15-C16                   1.422(3)                C49-C50                   1.426(3) 
    C16-C17                   1.359(3)                C50-C51                   1.368(3)  
    C17-C18                   1.413(3)                C51-C52                   1.414(3) 
    C18-C19                   1.366(3)                C52-C53                   1.349(3) 
    C19-C20                   1.405(3)                C53-C54                   1.427(3) 
    C15-C20                   1.430(3)                C49-C54                   1.440(3)  
    N2-C20                     1.353(3)                N4-C54                     1.336(3)   
    N2-C21                     1.399(3)                N4-C55                     1.400(3)   
    C21-C26                   1.406(3)                C55-C60                   1.413(3) 
    C26-O2                     1.392(3)                C60-O4                     1.384(3) 
    C19-O2                     1.379(3)                C53-O4                     1.370(3) 
    C21-C22                   1.399(3)                C55-C56                   1.387(3)  
    C22-C23                   1.389(3)                C56-C57                   1.389(3)  
    C23-C24                   1.390(3)                C57-C58                   1.390(3) 
    C24-C25                   1.402(3)                C58-C59                   1.398(3) 
    C25-C26                   1.394(3)                C59-C60                   1.388(3)  
 
    N1-Co1-N3              167.93(8)  
    N1-Co1-O1              84.80(7)  
    N3-Co1-O1              86.55(7)  
    N1-Co1-O3              86.92(7)  
    N3-Co1-O3              84.88(7)  
    O1-Co1-O3              91.35(7)  
    N1-Co1-N2              83.83(8)  
    N3-Co1-N2              104.83(8)  
    O1-Co1-N2              168.60(7)  
    O3-Co1-N2              88.97(7)  
    N1-Co1-N4              104.64(8)  
    N3-Co1-N4              83.64(8)  
    O1-Co1-N4              89.33(7)  
    O3-Co1-N4              168.43(7)  
    N2-Co1-N4              92.64(8)  
 
    C1-O1-Co1              112.16(1)  
    C15-N1-Co1            114.23(2)  
    C6-N1-Co1              113.78(2)  
    C20-N2-Co1            108.98(2)  
    C21-N2-Co1            133.53(2)  
    C35-O3-Co1            111.70(1)  
    C49-N3-Co1            114.37(2)  
    C40-N3-Co1            113.34(1)  
    C54-N4-Co1            109.60(2)  
    C55-N4-Co1            132.92(2)  
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Table D.6.3. Crystal Data for [Mn(HL)2]a 

   

Formula C68H90MnN4O
4 

 

M 1082.38  
Space 
group 

P(-1)  

a / Å 10.1391(6)  
b/ Å 12.6264(7)  
c/ Å 25.3609(1)  
α/ o 86.646(3)  
β/ o 81.244(4)  
γ/ o 74.572(4)  
V/ Å3 3092.7(3)  
Z 2  
T/ K 100(2)  
λ/ Å 0.71073  
Dcalc/ g cm-

3 
1.162  

µ/ mm-1 0.263  
R(F) (%) 7.94  
Rw(F) (%) 13.39  

 

a R(F) = ∑║Fo│-│Fc║ ∕ ∑│Fo│ for I > 2σ(I); Rw(F) = [∑w(Fo
2 – Fc

2)2 / ∑w(Fo
2)2]1/2 for I > 2σ(I). 
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Figure D.6.2. Perspective view ORTEP diagram of [Mn(HL)2] showing 50% probability 
of the thermal ellipsoids. Hydrogen atoms are excluded for clarity. Each L is only 
tridentate in the Mn complex with one phenol arm rotated away. 
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Table D.6.4. Selected bond distances (Å) and angles (o) for [Mn(HL)2]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

   
 

Mn1-N3                   1.898(3)  
Mn1-N1                   1.908(3)  
Mn1-O1                   1.931(3)  
Mn1-O3                   1.933(3)  
Mn1-N4                   1.950(3)  

   Mn1-N2                   1.956(3)  
O1-C1                      1.349(4)  
C1-C6                      1.413(5)  
C1-C2                      1.421(5)  
C2-C3                      1.375(6)  

   C3-C4                     1.414(6)  
C4-C5                      1.383(5) 
C5-C6                      1.405(5)  
C6-N1                      1.396(5)       
N1-C7                      1.367(5)  
C7-C8                      1.401(5)  
C7-C12                    1.436(5)  
C8-C9                      1.362(5)  
C9-C10                    1.417(5)  
C10-C11                  1.365(5)  
C11-C12                  1.414(5)  
C12-N2                    1.353(5)  
 N2-C13                   1.426(5)  
 C13-C18                 1.394(5)  
 C13-C14                 1.399(5)  
 C14-C15                 1.384(5)  
 C15-C16                 1.400(5)  
 C16-C17                 1.394(5)  
 C17-C18                 1.408(5)  
 C18-O2                   1.368(4)  
 
N3-Mn1-N1            174.59(1)  
N3-Mn1-O1            94.55(1)  
N1-Mn1-O1            82.19(1)  
N3-Mn1-O3            82.11(1)  
N1-Mn1-O3            93.63(1)  
O1-Mn1-O3            91.73(1)  
N3-Mn1-N4            80.45(1)  
N1-Mn1-N4            103.84(1)  
O1-Mn1-N4            90.78(1)  
O3-Mn1-N4            162.53(1)  
N3-Mn1-N2            103.13(1)  
N1-Mn1-N2            80.43(1)  
O1-Mn1-N2            161.99(1)  
O3-Mn1-N2            94.04(1)  
N4-Mn1-N2            88.82(1)  
 
C1-O1-Mn1             110.7(2) 
C7-N1-Mn1             117.7(2) 
C6-N1-Mn1             112.7(2) 
C12-N2-Mn1           114.9(2)  
C13-N2-Mn1           120.5(2)  
C35-O3-Mn1           111.3(2) 
C41-N3-Mn1           117.9(2)  
C40-N3-Mn1           112.9(2) 
C46-N4-Mn1           114.4(2)  
C47-N4-Mn1           126.0(2) 
 
 

 
 
 
 
 
 
 
O3-C35                     1.345(4)  
C35-C40                   1.400(5)  
C35-C36                   1.413(5)  
C36-C37                   1.393(5)  
C37-C38                   1.396(5)  
C38-C39                   1.387(5)  
C39-C40                   1.393(5)  
C40-N3                     1.402(5)  
N3-C41                     1.351(5)  
C41-C42                   1.422(5)  
C41-C46                   1.431(5)  
C42-C43                   1.365(5)  
C43-C44                   1.412(5)  
C44-C45                   1.359(5)  
C45-C46                   1.421(5)  
C46-N4                     1.348(5)  
N4-C47                     1.419(5)  
C47-C48                   1.385(5)  
C47-C52                   1.409(5)  
C48-C49                   1.388(5)  
C49-C50                   1.394(5)  
C50-C51                   1.395(5)  
C51-C52                   1.394(5)  
C52-O4                     1.375(5)  
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Figure D.6.3. EPR spectrum of [LSCoIII(L’1–)(L’2–)]. 

 

Frequency: 9.272000 GHz 
Power: 0.21 mV 
Modulation Frequency: 100.00 kHz 
Modulation Amplitude: 2.00 G 
 

3. Computational Details.   

Electronic structure calculations were carried out using density functional theory (DFT)4 
as implemented in the development version of Gaussian.5 Geometry optimizations were 
performed at the B3LYP/6-31G(d,p)6-9 level of theory employing the IEF-PCM10-12 
variant for the continuum solvation model (dichloromethane) with no symmetry 
constraints. The experimental ligands were substituted with tBu groups; we replaced 
these with H for computational efficiency. All optimized structures were confirmed to 
have stable wavefunctions,13,14 and to be local minima by analyzing the harmonic 
frequencies.15 Cartesian coordinates and frequencies for all species can be found in 
Tables D.6.4 and D.6.5, respectively. TD-DFT16,17 was employed to estimate vertical 
electronic excitation energies and intensities, and the results were visualized and fit with 
Gaussians using GaussView.18  

We initially explored multiple metal oxidation / spin state combinations with the ligand, 
including: LSCoII / L’1– / L’1–, HSCoII / L’1– / L’1–, and LSCoIII / L’2– / L’1–, as well as naïve 
calculations where we only defined the total charge and spin and ran a stable=opt 
calculation to ensure a reliable wavefunction. All of these calculations converged to one 
of three states: the localized doublet presented in Fig. 6.2, a doublet with spin density 
delocalized across both ligands (see Figure D.6.4 for comparison of spin densities), and a 
quartet with three ligand based radicals. The two doublets are nearly isoenergetic (Table 
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D.6.8), and we chose to present and analyze the localized one because it did not require 
invoking fractional oxidation states. Given their energetic and structural similarity, we 
view the delocalized structure as being an average of the two localized [LSCoIII(L’1–)(L’2–

)] / [LSCoIII(L’2–)(L’1–)] structures. Structural comparsion to the X-ray data does not allow 
us to discern which is more correct. The quartet is higher in energy by ∆G(sol) = 4.1 kcal 
mol–1. 

Figure D.6.4. Comparison of spin density isoplots (0.002 au) for the localized (left) and 
delocalized (right) doublets. 
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Table D.6.5. Structural comparison of the Co–L and some intraligand bond lengths (Å). 

 

 Co–O Co–N Co–N’ O–C1 C1–C2 C2–N N–C3 C3–C4 C4–N’ 

X−ray 1.89 
1.90 

1.88 
1.89 

1.95 
1.96 

1.33 
1.32 

1.41 
1.42 

1.38 
1.38 

1.35 
1.35 

1.43 
1.44 

1.35 
1.34 

Localized 
S = 1/2 

1.889 
1.906 

1.895 
1.912 

1.983 
1.985 

1.331 
1.303 

1.428 
1.445 

1.390 
1.367 

1.353 
1.347 

1.441 
1.451 

1.363 
1.343 

Delocalized 
S = 1/2 

1.898 
1.898 

1.899 
1.899 

1.981 
1.981 

1.319 
1.319 

1.434 
1.434 

1.381 
1.381 

1.346 
1.346 

1.448 
1.448 

1.349 
1.349 

S = 3/2 1.897 
1.897 

1.904 
1.904 

1.986 
1.986 

1.316 
1.316 

1.440 
1.440 

1.372 
1.372 

1.365 
1.365 

1.435 
1.435 

1.374 
1.374 
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Table D.6.6. Cartesian coordinates (Å) for all computed species. 

Localized Doublet (S = 1/2) 

Co            -0.009107   -0.013938    0.683590 
 N             -0.939072   -1.108724   -0.685673 
 C             -0.525821   -2.381770   -0.576844 
 C             -1.926665   -0.832176   -1.625114 
 C             -1.127928   -3.458066   -1.296630 
 C              0.593483   -2.671670    0.299108 
 C             -2.532097   -1.887842   -2.350817 
 C             -2.352563    0.479250   -1.903484 
 C             -0.710468   -4.754279   -1.118640 
 O             -2.164159   -3.195034   -2.147945 
 C              0.982939   -4.026034    0.491069 
 N              1.116883   -1.552295    0.835084 
 C             -3.528565   -1.653379   -3.289824 
 C             -3.347168    0.717618   -2.844117 
 H             -1.894596    1.296585   -1.367902 
 C              0.336591   -5.025997   -0.202592 
 H             -1.203000   -5.553077   -1.660763 
 H              1.751992   -4.276883    1.206418 
 C              2.181830   -1.362267    1.671122 
 C             -3.939750   -0.344778   -3.536382 
 H             -3.962668   -2.498334   -3.812766 
 H             -3.660474    1.737274   -3.041289 
 H              0.628295   -6.058332   -0.041268 
 C              2.123151   -0.063757    2.301208 
 C               3.272387   -2.227048    1.936242 
 H             -4.716454   -0.156086   -4.269835 
 C              3.131439    0.292907    3.230411 
 O               1.134961    0.735319    2.011296 
 C               4.251241   -1.835678    2.828367 
 H              3.371177   -3.165645    1.407584 
 C               4.169006   -0.582354    3.483584 
 H               3.071160    1.261955    3.713989 
 H              5.097607   -2.486956    3.018643 
 H              4.947044   -0.300002    4.186578 
 N              0.916115    1.125441   -0.649385 
 C               0.495371    2.411836   -0.487787 
 C               1.944356    0.909089   -1.559368 
 C               1.108154    3.514884   -1.130907 
 C              -0.632163    2.642545    0.378541 
 C               2.563679    2.004225   -2.213689 
 C              2.403556   -0.377649   -1.893317 
 C               0.677548    4.806484   -0.911652 
 O              2.176153    3.302906   -1.968916 
 C              -1.045194    3.980633    0.615512 
 N             -1.150423    1.488896    0.859282 
 C               3.592001    1.824079   -3.130080 
 C              3.433470   -0.562492   -2.811625 
 H              1.941624   -1.232536   -1.421888 
 C             -0.395003    5.023293   -0.019972 

 H              1.180731    5.629957   -1.405153 
 H             -1.840298    4.189048    1.316634 
 C              -2.213587    1.260844    1.725772 
 C               4.034747    0.535575   -3.431770 
 H              4.030306    2.700928   -3.594844 
 H              3.764769   -1.569627   -3.043476 
 H             -0.711561    6.042791    0.177054 
 C             -2.116806   -0.025399    2.338526 
 C              -3.320985    2.082764    1.995735 
 H              4.838798    0.394998   -4.146436 
 C             -3.097121   -0.422216    3.260959 
 O              -1.088822   -0.806885   2.015448 
 C              -4.295213    1.660894    2.901523 
 H             -3.444232    3.025928    1.478621 
 C              -4.175336    0.419149    3.537469 
 H             -3.003974   -1.393545    3.737136 
 H             -5.150564    2.298197    3.103011 
 H             -4.934470    0.098728    4.245587 
 
Delocalized Doublet (S = 1/2) 
 
Co            -0.000022   -0.000045   -0.686674 
 N              0.920845   -1.122405    0.660971 
 C              0.498221   -2.395938    0.519778 
 C               1.911995   -0.878796    1.605463 
 C               1.090017   -3.492194    1.209993 
 C             -0.622898   -2.646671   -0.361444 
 C               2.510345   -1.958147    2.302180 
 C               2.352848    0.419133    1.919069 
 C               0.662007   -4.781152    1.000626 
 O              2.132780   -3.259447    2.067777 
 C             -1.026912   -3.992600   -0.587303 
 N             -1.142607   -1.507115   -0.853492 
 C               3.509914   -1.755467    3.245039  
 C               3.353152    0.625904    2.863216 
 H               1.902067    1.257251    1.409355 
 C             -0.389939   -5.016714    0.080550 
 H              1.149709   -5.598301    1.519273 
 H             -1.804008   -4.214350   -1.304294 
 C             -2.210742   -1.287200   -1.701474 
 C               3.936599   -0.457861    3.526758 
 H              3.936854   -2.618407    3.744448 
 H               3.676094    1.637902    3.083992 
 H             -0.694544   -6.041462   -0.105966 
 C             -2.116807   -0.000537   -2.327462 
 C             -3.316726   -2.120697   -1.963842 
 H              4.716720   -0.296836    4.263235 
 C             -3.101848    0.378616   -3.261153 
 O             -1.100498    0.782056   -2.020615 
 C             -4.289797   -1.708822   -2.865752 
 H             -3.435231   -3.058146   -1.435731 
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 C             -4.172215   -0.468182   -3.519298 
 H             -3.012862    1.343845   -3.749201 
 H             -5.148081   -2.344513   -3.057424 
 H             -4.937071   -0.160758   -4.226670 
 N             -0.920882    1.122515    0.660867 
 C              -0.498226    2.395972    0.519566 
 C              -1.911987    0.878981    1.605428 
 C              -1.089937    3.492313    1.209778 
 C               0.622874    2.646636   -0.361749 
 C              -2.510244    1.958386    2.302134 
 C             -2.352856   -0.418931    1.919089 
 C              -0.661895    4.781226    1.000288 
 O             -2.132623    3.259641    2.067649 
 C               1.026897    3.992550   -0.587728 
 N              1.142535    1.507056   -0.853731 
 C             -3.509764    1.755789    3.245064 
 C             -3.353098   -0.625617    2.863308 
 H             -1.902139   -1.257067    1.409351 
 C               0.389994    5.016705    0.080102 
 H             -1.149524    5.598431    1.518914 
 H              1.803934    4.214242   -1.304801 
 C               2.210651    1.287045   -1.701641 
 C              -3.936460    0.458208    3.526846 
 H             -3.936643    2.618758    3.744473 
 H             -3.676072   -1.637588    3.084152 
 H              0.694593    6.041437   -0.106502 
 C               2.116724    0.000269   -2.327469 
 C               3.316622    2.120551   -1.964152 
 H             -4.716538    0.297232    4.263379 
 C              3.101781   -0.378976   -3.261146 
 O              1.100460   -0.782268   -2.020564 
 C               4.289666    1.708568   -2.865996 
 H              3.435125    3.058065   -1.436158 
 C               4.172095    0.467811   -3.519392 
 H              3.012814   -1.344269   -3.749066 
 H              5.147953    2.344225   -3.057758 
 H              4.936960    0.160328   -4.226726 
 
Quartet (S = 3/2) 
 
Co             0.000005   -0.000151    0.671606 
 N              1.065097    1.013351   -0.662897 
 C              0.781360    2.351082   -0.530939 
 C              2.084001    0.680186   -1.536816 
 C              1.527023    3.361468   -1.170044 
 C             -0.328077    2.722726    0.299246 
 C              2.834584    1.693480   -2.192307 
 C              2.410691   -0.657186   -1.844090 
 C              1.236884    4.706351   -0.987831 
 O              2.581097    3.025911   -1.976684 
 C             -0.598565    4.092533    0.498915 
 N             -0.966342    1.634157    0.820934 
 C              3.859164    1.391520   -3.082403 
 C              3.429652   -0.960429   -2.736849 

 H              1.849236   -1.447360   -1.368588 
 C              0.178964    5.055544   -0.139488 
 H              1.840578    5.454719   -1.487903 
 H             -1.382866    4.403988    1.173310 
 C              -2.067684    1.543868    1.634088 
 C              4.162033    0.060129   -3.356934 
 H              4.400042    2.208732   -3.547225 
 H              3.657241   -1.999521   -2.951209 
 H             -0.037433    6.105411    0.029133 
 C             -2.138114    0.254506    2.272460 
 C             -3.088617    2.490376    1.867082 
 H              4.961405   -0.179176   -4.050133 
 C             -3.183570   -0.013985    3.179737 
 O             -1.213212   -0.635675    1.984607 
 C             -4.118819    2.188858    2.748099 
 H             -3.097349    3.432787    1.335492 
 C             -4.158027    0.945966    3.411251 
 H             -3.211644   -0.982147    3.669162 
 H             -4.906039    2.916308    2.918541 
 H             -4.969028    0.732017    4.101032 
 N             -1.065027   -1.013042   -0.663452 
 C             -0.781378   -2.350825   -0.532010 
 C             -2.083839   -0.679460   -1.537348 
 C             -1.527035   -3.360933   -1.171594 
 C              0.327978   -2.722857    0.298129 
 C             -2.834416   -1.692445   -2.193310 
 C             -2.410422    0.658042   -1.844130 
 C             -1.236971   -4.705883   -0.989897 
 O             -2.581036   -3.024987   -1.978188 
 C               0.598387   -4.092781    0.497269 
 N              0.966261   -1.634554    0.820272 
 C             -3.858888   -1.390072   -3.083385 
 C             -3.429287    0.961708   -2.736870 
 H             -1.848969    1.448007   -1.368279 
 C             -0.179128   -5.055474   -0.141584 
 H             -1.840655   -5.454029   -1.490314 
 H              1.382614   -4.404536    1.171611 
 C               2.067558   -1.544640    1.633598 
 C             -4.161665   -0.058552   -3.357426 
 H             -4.399766   -2.207072   -3.548581 
 H             -3.656790    2.000902   -2.950834 
 H              0.037187   -6.105423    0.026635 
 C               2.137994   -0.255566    2.272492 
 C               3.088423   -2.491280    1.866256 
 H             -4.960958    0.181067   -4.050608 
 C               3.183402    0.012509    3.179925 
 O               1.213128    0.634803    1.984940 
 C               4.118604   -2.190185    2.747470 
 H              3.097135   -3.433476    1.334281 
 C               4.157824   -0.947583    3.411115 
 H               3.211492    0.980468    3.669752 
 H              4.905770   -2.917753    2.917661 
 H              4.968786   -0.733934    4.101036 
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Table D.6.7. Frequencies (cm–1) for all computed species. 
 
Localized Doublet (S = 1/2) 
 
    21.9415      32.1255      33.3324 
    35.7518      42.8661      68.0375 
    72.5741      85.8094      88.3403 
    99.4860     107.2406     127.2777 
   128.3380     164.5339     167.3005 
   175.3325     187.9608     204.2717 
   210.7399     249.4725     253.9578 
   260.1378     266.7987     272.6147 
   281.9180     290.8967     297.8713 
   307.3494     311.2094     315.7507 
   345.0385     365.8336     372.7901 
   380.1262     408.5356     416.9194 
   426.2645     439.3576     442.3763 
   465.4477     469.7643     471.9410 
   474.7177     487.8961     504.6775 
   522.9738     526.7863     537.1704 
   548.1098     553.4276     557.2964 
   559.0504     560.7493     563.6729 
   576.6455     583.7661     590.5883 
   596.6402     607.9248     615.2811 
   619.0610     636.9663     644.9460 
   648.8211     655.7131     692.9280 
   696.8004     702.1556     708.8977 
   716.5908     727.5680     734.4343 
   741.5570     748.9488     758.3434 
   760.4559     766.8025     767.7271 
   770.8192     777.5914     781.3606 
   832.3555     840.4107     844.7774 
   851.4315     853.3810     854.9226 
   859.9251     862.0155     872.5975 
   879.6666     880.7914     884.7953 
   901.2404     903.8995     915.2248 
   916.3108     921.9414     933.6592 
   947.5446     949.9740     956.2544 
   961.3184     973.4080     976.2982 
   987.1920     987.6168    1039.7041 
  1051.3035    1057.8327    1059.9198 
  1067.1203    1073.5047    1086.6254 
  1094.1130    1123.0122    1136.4886 
  1141.3515    1143.2437    1153.9449 
  1170.1594    1177.3887    1178.3126 
  1184.0881    1195.4104    1222.1959 
  1227.5394    1233.9716    1235.4131 
  1251.6810    1266.1810    1267.0054 
  1285.3406    1294.7243    1298.2656 
  1301.5219    1310.7810    1312.2134 
  1321.5835    1338.9443    1339.5063 
  1345.7840    1352.5801    1361.9619 

  1371.0968    1388.8078    1394.8544 
  1414.9068    1417.8466    1443.6176 
  1449.5601    1474.2012    1480.0472 
  1484.9078    1491.1471    1493.1602 
  1503.3024    1506.8146    1511.5824 
  1523.4748    1530.4066    1570.6235 
  1579.4133    1580.3652    1605.0876 
  1615.1187    1619.1975    1620.9086 
  1626.9902    1631.8823    1635.5091 
  1659.5179    1663.1760    3179.2799 
  3192.7848    3194.4223    3196.6795 
  3197.8970    3203.0252    3203.6732 
  3207.7057    3209.1610    3209.7852 
  3215.0608    3217.2871    3219.0222 
  3222.5632    3224.8898    3228.0418 
  3228.6253    3241.1446    3260.4438 
  3269.6271    3270.2695    3282.5691 
 
Delocalized Doublet (S = 1/2) 
 
    20.7411      30.3839      33.4512 
    36.2940      42.9771      61.5090 
    69.0938      86.5847      86.9497 
    97.9664     105.4015     126.1192 
   129.3268     142.4557     166.3150 
   176.7288     181.2778     198.9474 
   209.1850     249.7339     252.6055 
   255.6043     260.9533     271.3782 
   278.7007     285.2004     290.9805 
   306.0580     309.9539     313.0275 
   322.8558     347.0735     371.3338 
   374.1131     380.2513     415.2807 
   422.9506     441.2844     442.6754 
   445.1678     467.8590     471.9827 
   476.9585     491.0547     500.1967 
   516.1025     523.6517     531.8202 
   544.8021     549.1338     556.8070 
   559.6464     561.7057     562.4285 
   570.7216     582.5584     586.9643 
   588.3006     604.6518     608.5235 
   615.1673     626.0103     646.5518 
   647.2631     651.9433     692.0209 
   698.9555     704.9170     707.4001 
   724.9942     730.7132     732.5935 
   735.8695     744.3351     754.6812 
   762.4020     765.5761     768.0054 
   774.1313     775.8006     779.2896 
   831.1166     839.1826     848.6094 
   850.9912     851.6132     855.2219 
   858.7723     863.2712     868.7833 
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   872.2705     882.2807     883.0278 
   902.4129     904.3952     915.0029 
   916.4686     928.4864     936.5080 
   938.6974     942.9824     952.0627 
   965.1526     969.8600     972.0536 
   976.7316     978.8778     984.1164 
  1046.2582    1048.7678    1058.5992 
  1059.3726    1073.3960    1080.2385 
  1092.8962    1093.6391    1139.3433 
  1141.5693    1144.4951    1148.0624 
  1171.1325    1176.2797    1177.8880 
  1180.0727    1192.9248    1204.0373 
  1229.3092    1233.0975    1239.0202 
  1244.2147    1267.1120    1269.1694 
  1278.9910    1294.9075    1297.1707 
  1301.4684    1310.8105    1314.3731 
  1320.8674    1329.2751    1337.2623 
  1352.8673    1354.3702    1359.2960 
  1364.3818    1395.4099    1402.0542 
  1413.1993    1417.1564    1435.3689 
  1440.8323    1451.1120    1479.0423 
  1484.3343    1491.2607    1496.5866 
  1500.5379    1500.9877    1510.2370 
  1524.9361    1530.7806    1571.0391 
  1574.2736    1587.4487    1595.6682 
  1617.6907    1619.9406    1622.5662 
  1625.5466    1632.8898    1634.3981 
  1661.3592    1663.6296    3183.7153 
  3187.3820    3199.3826    3199.5627 
  3201.9165    3202.0401    3203.6246 
  3205.4319    3207.1659    3210.6270 
  3211.0455    3213.2042    3221.2072 
  3223.2123    3224.9996    3227.2099 
  3230.1074    3233.3200    3261.0200 
  3263.8672    3276.5948    3277.9634 
 
Quartet (S = 3/2) 
 
    21.6153      26.8565      29.8768 
    34.0367      40.6911      64.2541 
    69.8314      83.3259      86.2304 
   100.2086     106.4783     109.5397 
   124.0972     148.6333     167.1694 
   171.8242     184.2819     186.0685 
   209.4871     226.6318     248.9917 
   255.8656     262.6823     268.5883 
   271.7134     279.6099     289.8084 
   302.5550     308.1899     311.0798 
   333.1941     354.0080     368.0104 
   373.5545     379.5324     414.4603 
   424.4121     431.5840     440.0321 
   453.1206     468.5618     470.5736 
   477.2635     478.0968     491.1733 
   498.1928     526.2067     528.5109 
   541.7928     547.8944     555.3083 
   556.2302     561.1220     563.5181 

   566.7487     584.5813     591.1603 
   595.1190     596.5473     612.0833 
   614.7213     629.5400     645.7217 
   651.2541     653.0434     692.6140 
   696.2456     702.7986     704.0511 
   715.1502     716.7390     731.9977 
   734.7472     743.0844     753.9555 
   762.1038     763.9959     768.4805 
   773.2648     774.3898     776.1789 
   809.7314     839.8486     846.4280 
   847.8136     853.0207     856.0737 
   857.9526     864.9400     868.8613 
   874.4216     876.2094     883.6929 
   892.3263     901.6146     908.3808 
   917.1284     925.9081     931.2916 
   937.5034     941.9175     947.0638 
   961.4502     965.9080     968.2872 
   974.1373     978.9935     983.4468 
  1043.8297    1047.5935    1057.4088 
  1058.7345    1075.1632    1077.7272 
  1098.4172    1099.6424    1140.8683 
  1143.4124    1145.9974    1149.3117 
  1174.4959    1177.3380    1178.3453 
  1194.2423    1200.6249    1206.8566 
  1231.7981    1233.4567    1239.8974 
  1241.8600    1265.6509    1268.5236 
  1292.7603    1295.7589    1297.8671 
  1299.3607    1315.5248    1318.0644 
  1335.6809    1338.6739    1343.1330 
  1350.3725    1354.0372    1357.6399 
  1360.8551    1364.3495    1372.6526 
  1383.7326    1409.4899    1423.8381 
  1455.2941    1464.7328    1475.8597 
  1487.6200    1489.5413    1494.7313 
  1497.3641    1508.0303    1509.9672 
  1520.3880    1521.1709    1581.9798 
  1587.2770    1591.8385    1593.0925 
  1601.7562    1605.8376    1616.4720 
  1617.7361    1624.2847    1627.7304 
  1650.1424    1652.8613    3185.6899 
  3189.6850    3198.7720    3199.7116 
  3201.0870    3202.6944    3203.1445 
  3206.2887    3208.6805    3209.9779 
  3212.2001    3212.6675    3221.0831 
  3223.0534    3225.2464    3227.6309 
  3233.4253    3236.5460    3263.4167 
  3265.2951    3273.6940    3275.7478 
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Table D.6.8. Energetics (Eh) for all computed species. 
 

 G(sol) 
Localized Doublet −3287.313856 

Delocalized Doublet −3287.315995 
Quartet −3287.309514 
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Table D.6.9. Assignments for low-energy TD-DFT transitions. Contributions > 10% are 
shown. The low energy band at ~1000 nm arises from these three transitions (see Figure 
D.6.4 which are predominantly LLCT in character, with some LMCT mixing. LLCT of 
both the intra and interligand type are observed. 
 
Excited  

State 
λ / 
nm 

Osc. 
Str. 

% 
cont. Occ. MO Unocc. MO 

6 1220 0.09 

67 

 
162β 

 
164β 

33 

 
162α 

 
164α 

7 978 0.13 40 

 
161α 

 
164α 
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38 

 
161β 

 
163β 

13 

 
163α 

 
165α 

8 913 0.06 

36 

 
163α 

 
165α 

13 

 
161α 

 
164α 



www.manaraa.com

215 
 

 

13 

 
161β 

 
163β 

 
 
Figure D.6.5. TD-DFT spectrum with transitions shown for the energy window near 
1000 nm. These transitions are outlined in Table D.6.7. 
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Scheme D.6.1. Details of ligand nomenclature. 

 
 
Defining a ligand shorthand for this new ligand is complicated by the fact that the 
bridging amide can conjugate with both ligands. In the past, there has been reference to 
iminocatecholate/iminosemiquinonate or diiminocatecholate/diiminosemiquinonate redox 
behavior where it was easy to group this nitrogen with the phenolate or phenoxazinylate 
arms of the ligand, respectively. We prefer to discuss the ligand as three fragments 
(Scheme 1, top): (i) the phenolate (PhO–, red), (ii) the bridging amide (N–, black), and 
(iii) the phenoxazinylate (Phz–, blue). While this description is inherently too localized a 
description, it emphasizes correctly whether the phenoxazinyl or phenol arm is the major 
contributor to a given redox process. 
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APPENDIX E 

Supplementary Information for Chapter 7 

Table E.7.1. Selected bond distances (Å) and angles (o) for 1 and 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Ga(L)(Cl)(CH3OH)]       [Fe(L)(Cl)]·0.5CH3CN·0.5CH2Cl2 
            
     Ga1-O2                     1.877(3)  
     Ga1-O1                     1.880(3)  
     Ga1-N1                     2.024(3)  
     Ga1-N2                     2.025(3)  
     Ga1-Cl1                    2.224(12)  
     Ga1-O3                     2.329(6) 

   O3-C35                    1.392(12) 
      O1-C1                      1.323(5)  
      C1-C2                      1.415(5)  
      C1-C6                      1.439(6)  
      C2-C3                      1.395(6)  
      C3-C4                      1.415(6)  
      C4-C5                      1.374(6)  
      C5-C6                      1.412(6)  
      C6-N1                      1.374(5)  
      N1-C7                      1.321(5)  
      C7-C8                      1.433(6)  
      C7-C12                    1.486(5)  
      C8-C9                      1.359(6)  
      C9-C10                    1.432(6)  
      C10-C11                  1.348(6)  
      C11-C12                  1.432(6)  
      C12-N2                    1.315(5)  
      N2-C13                    1.383(5)  
      C13-C14                  1.411(5)  
      C13-C18                  1.437(6)  
      C14-C15                  1.367(6)  
      C15-C16                  1.407(6)  
      C16-C17                  1.390(6)  
      C17-C18                  1.420(5)  
      C18-O2                    1.326(5)  
          
     O2-Ga1-O1               105.00(13)  
     O2-Ga1-N1               155.50(14)  
     O1-Ga1-N1               83.64(14)  
     O2-Ga1-N2               83.91(13)  
     O1-Ga1-N2               154.40(14)  
     N1-Ga1-N2               79.48(14)  
     O2-Ga1-Cl1              101.98(10)  
     O1-Ga1-Cl1              102.16(11)  
     N1-Ga1-Cl1              98.39(10)  
     N2-Ga1-Cl1              99.25(10)  
     O2-Ga1-O3               80.95(18)  
     O1-Ga1-O3               78.32(19)  
     N1-Ga1-O3               78.42(18)  
     N2-Ga1-O3               79.53(18)  
     Cl1-Ga1-O3              176.73(16) 
     
     C35-O3-Ga1             123.7(6)   
     C1-O1-Ga1               112.6(3)   
     C7-N1-Ga1               114.5(3)  
     C6-N1-Ga1               110.3(3)  
     C12-N2-Ga1             115.0(3)  
     C13-N2-Ga1             109.9(3)  
     C18-O2-Ga1             112.3(3)  
                      

 
         Fe1-O2                    1.942(11)  
         Fe1-O1                    1.948(11)  
         Fe1-N1                    2.022(13)  
         Fe1-N2                    2.044(13)  
         Fe1-Cl1                   2.220(5) 
         O1-C1                     1.299(19)  
         N1-C6                     1.342(2)  
         N1-C7                     1.395(2)  
         N2-C13                   1.343(2)  
         N2-C12                   1.394(19)  
         O2-C18                   1.300(18)  
         C1-C2                     1.435(2)  
         C1-C6                     1.453(2)  
         C2-C3                     1.374(2)  
         C3-C4                     1.427(3)  
         C4-C5                     1.366(2)  
         C5-C6                     1.415(2)  
         C7-C8                     1.401(2)  
         C7-C12                   1.424(2)  
         C8-C9                     1.386(2)  
         C9-C10                   1.392(3)  
         C10-C11                 1.389(2)  
         C11-C12                 1.401(2)  
         C13-C14                 1.424(2)  
         C13-C18                 1.453(2)  
         C14-C15                 1.371(2)  
         C15-C16                 1.436(2)  
         C16-C17                 1.371(2)  
         C17-C18                 1.428(2)  
 
         
         
         O2-Fe1-O1             101.45(5)  
         O2-Fe1-N1             143.32(5)  
         O1-Fe1-N1             79.19(5)  
         O2-Fe1-N2             78.93(5)  
         O1-Fe1-N2             135.51(5)  
         N1-Fe1-N2             75.93(5)  
         O2-Fe1-Cl1            108.40(4)  
         O1-Fe1-Cl1            110.23(4)  
         N1-Fe1-Cl1            105.52(4)  
         N2-Fe1-Cl1            111.68(4) 
  
          
 
 
 
 
         C1-O1-Fe1             116.88(10)  
         C6-N1-C7              128.21(13)  
         C6-N1-Fe1             115.66(10)  
         C7-N1-Fe1             114.77(10)  
         C13-N2-C12           130.04(13)  
         C13-N2-Fe1           115.22(10)  
         C12-N2-Fe1           114.60(10)  

       C18-O2-Fe1           117.37(10) 
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Table E.7.2. Phenolate arm C–C bond lengths (Å).  

 

 
Å C2–C6 C6–C7 C7–C8 C8–C9 C9–C1 

X–ray GaIII
 1.41 1.37 1.41 1.39 1.42 

X–ray FeIII
 1.42 1.37 1.43 1.37 1.43 

AvgGa/Fe 1.41 1.38 1.42 1.38 1.43 
Calc GaIII–L2–,Q 1.42 1.38 1.42 1.38 1.42 
Calc GaIII–L2–,•• 1.42 1.38 1.43 1.38 1.42 

Calc HSFeIII–L2–,•• 1.42 1.38 1.43 1.38 1.42 
aCuII 1.41 1.37 1.42 1.38 1.43 
aZnII 1.41 1.37 1.42 1.38 1.43 
bTiIV 1.42 1.39 1.41 1.38 1.42 
cZrIV 1.40  1.37 1.41  1.39 1.42 

          a reference 5; b reference 7; c reference 6 (references within Chapter 7) 

Table E.7.3. Table of orbital excitations that contribute to the major absorption spectrum 
features. 

 S^2 λ / nm f Description 

Ga 
(1) 

- 326 0.323 95% HOMO → LUMO 
- 423 0.081 >99% HOMO-1 → LUMO 
- 576 0.076 >99% HOMO-2 → LUMO 
- 673 0.084 93% HOMO-3 → LUMO 
- 969 0.335 96% HOMO → LUMO+1 

Fe 
(2) 

5.4 422 0.072 93% βHOMO-2 → βLUMO+3 
5.4 497 0.088 62% αHOMO-3 → αLUMO, 10% βHOMO → 

βLUMO+4, 
10% αHOMO-4 → αLUMO+1, 10% αHOMO-2 → 

αLUMO+1 
4.9 683 0.059 67% βHOMO-1 → βLUMO+2, 24% βHOMO-1 → 

βLUMO+1 
5.2 880 0.055 44% αHOMO → αLUMO, 30% αHOMO-3 → 

αLUMO, 
18% βHOMO-1 → βLUMO 
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Figure E.7.1. In-plane view of the neutral molecule 1 (top) and 2 (bottom). 
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Permission/License Agreements for Copyrighted Material 

This dissertation entails multidisciplinary and complimentary research efforts aiming to 

develop responsive Langmuir−Blodgett films containing transition metal ions. My 

contributions to this work entailed the synthetic, spectroscopic, and electrochemical 

characterizations along with the development of the original drafts of the published 

manuscripts. Some common portions appear in Dr. Rama Shanmugam’s thesis focused 

on the film studies. These dissertations have not been copyright protected as stated in the 

following pages. All previously published materials have been reprinted with permission 

from the American Chemical Society or WILEY-VCH Verlag GmbH & Co. KGaA, 

Weinheim.  
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ABSTRACT 

SYNTHESIS, SPECTROSCOPIC, AND ELECTROCHEMICAL PROPERTIES 
OF 3d METAL AND RUTHENIUM COMPLEXES WITH PHENOLATE AND 

CATECHOLATE LIGANDS 

by 

FRANK DONALD LESH 

May 2012 

Advisor: Dr. Cláudio N. Verani 

Major: Chemistry (Inorganic) 

Degree: Doctor of Philosophy 

The integration of amphiphilic properties into transition metal coordination 

systems is a pertinent step toward the development of candidate metallosurfactant 

precursors for the formation of responsive monolayer films. This concept is intended to 

preserve the solution-observed redox, spectroscopic, and magnetic responses onto solid 

surfaces for potential application. Selected metal ions and various ligand designs are 

investigated to address the effect of coordination and protonation preferences on 

amphiphilic behavior, the aspects of new modular approaches for Langmuir film 

precursors of differentiated topologies to extend amphiphilicity and redox behavior, and 

the introduction of photosensitizing properties into electroactive metallosurfactant 

precursors. In an attempt to enhance the redox response of our current phenolato-based 

ligand scaffolds, rich multielectronic ligand-centered redox reactivity is established with 

the amino-catecholate functionality and will be incorporated into prospective ligand 

schemes. A concerted effort merges the comprehensive synthetic, electrochemical, 
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spectroscopic, and photophysical evidence, film formation methods, and computational 

techniques. 
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